Suppr超能文献

钙信号转导与顶复门原虫弓形虫的裂解周期。

Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii.

机构信息

Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.

Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.

出版信息

Biochim Biophys Acta Mol Cell Res. 2018 Nov;1865(11 Pt B):1846-1856. doi: 10.1016/j.bbamcr.2018.08.004. Epub 2018 Aug 10.

Abstract

Toxoplasma gondii has a complex life cycle involving different hosts and is dependent on fast responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists of host cell invasion, replication inside the host cell, and egress causing host cell lysis. Calcium ion (Ca) signaling triggers activation of molecules involved in the stimulation and enhancement of each step of the parasite lytic cycle. Ca signaling is essential for the cellular and developmental changes that support T. gondii parasitism. The characterization of the molecular players and pathways directly activated by Ca signaling in Toxoplasma is sketchy and incomplete. The evolutionary distance between Toxoplasma and other eukaryotic model systems makes the comparison sometimes not informative. The advent of new genomic information and new genetic tools applicable for studying Toxoplasma biology is rapidly changing this scenario. The Toxoplasma genome reveals the presence of many genes potentially involved in Ca signaling, even though the role of most of them is not known. The use of Genetically Encoded Calcium Indicators (GECIs) has allowed studies on the role of novel calcium-related proteins on egress, an essential step for the virulence and dissemination of Toxoplasma. In addition, the discovery of new Ca players is generating novel targets for drugs, vaccines, and diagnostic tools and a better understanding of the biology of these parasites.

摘要

刚地弓形虫具有复杂的生活史,涉及不同的宿主,并且依赖于快速的反应,因为寄生虫会对不断变化的环境条件做出反应。刚地弓形虫通过裂解它感染的宿主细胞来引起疾病,它通过重复其裂解周期来实现这一点,该周期包括宿主细胞入侵、在宿主细胞内复制和出芽导致宿主细胞裂解。钙离子(Ca)信号触发参与寄生虫裂解周期刺激和增强的分子的激活。Ca 信号对于支持刚地弓形虫寄生的细胞和发育变化是必不可少的。刚地弓形虫中 Ca 信号直接激活的分子参与者和途径的特征描述是粗略和不完整的。刚地弓形虫与其他真核模式生物系统之间的进化距离使得比较有时没有信息。适用于研究刚地弓形虫生物学的新基因组信息和新遗传工具的出现正在迅速改变这种情况。刚地弓形虫基因组揭示了许多可能涉及 Ca 信号的基因的存在,尽管它们中的大多数的作用尚不清楚。使用遗传编码钙指示剂(GECIs)已允许研究新型钙相关蛋白在出芽过程中的作用,出芽是刚地弓形虫毒力和传播的必要步骤。此外,新的 Ca 参与者的发现为药物、疫苗和诊断工具提供了新的靶标,并更好地理解了这些寄生虫的生物学。

相似文献

1
Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii.钙信号转导与顶复门原虫弓形虫的裂解周期。
Biochim Biophys Acta Mol Cell Res. 2018 Nov;1865(11 Pt B):1846-1856. doi: 10.1016/j.bbamcr.2018.08.004. Epub 2018 Aug 10.

引用本文的文献

9
Melatonin as a Circadian Marker for Rhythms.褪黑素作为节律的生物钟标志物。
Int J Mol Sci. 2024 Jul 17;25(14):7815. doi: 10.3390/ijms25147815.

本文引用的文献

1
Protein kinase A negatively regulates Ca2+ signalling in Toxoplasma gondii.蛋白激酶 A 负调控刚地弓形虫中的 Ca2+ 信号转导。
PLoS Biol. 2018 Sep 12;16(9):e2005642. doi: 10.1371/journal.pbio.2005642. eCollection 2018 Sep.
6
Dissecting the molecular assembly of the MyoA motility complex.剖析肌动蛋白A运动复合体的分子组装。
J Biol Chem. 2017 Nov 24;292(47):19469-19477. doi: 10.1074/jbc.M117.809632. Epub 2017 Sep 25.
8
Gliding motility powers invasion and egress in Apicomplexa.滑行运动为顶复门生物的入侵和逸出提供动力。
Nat Rev Microbiol. 2017 Nov;15(11):645-660. doi: 10.1038/nrmicro.2017.86. Epub 2017 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验