Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA.
Department of Radiation Oncology, University of California, San Francisco, CA, USA.
Mol Imaging Biol. 2020 Feb;22(1):208-216. doi: 10.1007/s11307-019-01347-0.
There are several important positron emission tomography (PET) imaging scenarios that require imaging with very low photon statistics, for which both quantitative accuracy and visual quality should not be neglected. For example, PET imaging with the low photon statistics is closely related to active efforts to significantly reduce radiation exposure from radiopharmaceuticals. We investigated two examples of low-count PET imaging: (a) imaging [Y]microsphere radioembolization that suffers the very small positron emission fraction of Y-90's decay processes, and (b) cancer imaging with [Ga]citrate with uptake time of 3-4 half-lives, necessary for visualizing tumors. In particular, we investigated a type of penalized likelihood reconstruction algorithm, block sequential regularized expectation maximization (BSREM), for improving both image quality and quantitative accuracy of these low-count PET imaging cases.
The NEMA/IEC Body phantom filled with aqueous solution of Y-90 or Ga-68 was scanned to mimic the low-count scenarios of corresponding patient data acquisitions on a time-of-flight (TOF) PET/magnetic resonance imaging system. Contrast recovery, background variation, and signal-to-noise ratio were evaluated in different sets of count densities using both conventional TOF ordered subset expectation (TOF-OSEM) and TOF-BSREM algorithms. The regularization parameter, beta, in BSREM that controls the tradeoff between image noise and resolution was evaluated to find a value for improved confidence in image interpretation. Visual quality assessment of the images obtained from patients administered with [Ga]citrate (n = 6) was performed. We also made preliminary visual image quality assessment for one patient with [Y]microspheres. In Y-90 imaging, the effect of 511-keV energy window selection for minimizing the number of random events was also evaluated.
Quantitatively, phantom images reconstructed with TOF-BSREM showed improved contrast recovery, background variation, and signal-to-noise ratio values over images reconstructed with TOF-OSEM. Both phantom and patient studies of delayed imaging of [Ga]citrate show that TOF-BSREM with beta = 500 gives the best tradeoff between image noise and image resolution based on visual assessment by the readers. The NEMA-IQ phantom study with [Y]microspheres shows that the narrow energy window (460-562 keV) recovers activity concentrations in small spheres better than the regular energy window (425-650 keV) with the beta value of 2000 using the TOF-BSREM algorithm. For the images obtained from patients with [Ga]citrate using TOF-BSREM with beta = 500, the visual analogue scale (VAS) was improved by 17 % and the Likert score was increased by 1 point on average, both in comparison to corresponding scores for images reconstructed using TOF-OSEM.
Our investigation shows that the TOF-BSREM algorithm improves the image quality and quantitative accuracy in low-count PET imaging scenarios. However, the beta value in this algorithm needed to be adjusted for each radiopharmaceutical and counting statistics at the time of scans.
有几种重要的正电子发射断层扫描(PET)成像情况需要进行非常低光子计数的成像,这些情况既不能忽视定量准确性,也不能忽视视觉质量。例如,具有低光子计数的 PET 成像与积极努力显著降低放射性药物的辐射暴露密切相关。我们研究了两种低计数 PET 成像的例子:(a)成像[Y]微球放射性栓塞,其遭受 Y-90 衰变过程的非常小的正电子发射分数,以及(b)用[Ga]柠檬酸盐进行癌症成像,摄取时间为 3-4 个半衰期,这对于可视化肿瘤是必要的。特别是,我们研究了一种惩罚似然重建算法,即块顺序正则化期望最大化(BSREM),用于提高这些低计数 PET 成像情况下的图像质量和定量准确性。
用 Y-90 或 Ga-68 的水溶液填充 NEMA/IEC 体模,以模拟相应患者数据采集的低计数情况,使用飞行时间(TOF)PET/MRI 系统进行采集。使用传统的 TOF 有序子集期望(TOF-OSEM)和 TOF-BSREM 算法,在不同的计数密度集下评估对比度恢复、背景变化和信噪比。在 BSREM 中,用于控制图像噪声和分辨率之间权衡的正则化参数β被评估,以找到对图像解释更有信心的数值。对接受[Ga]柠檬酸盐(n=6)给药的患者获得的图像进行视觉质量评估。我们还对一名接受[Y]微球的患者进行了初步的视觉图像质量评估。在 Y-90 成像中,还评估了选择 511keV 能量窗口以最小化随机事件数量的效果。
定量结果表明,与 TOF-OSEM 重建的图像相比,使用 TOF-BSREM 重建的图像具有更好的对比度恢复、背景变化和信噪比值。对[Ga]柠檬酸盐延迟成像的体模和患者研究均表明,基于读者的视觉评估,TOF-BSREM 与β=500 之间具有最佳的图像噪声和图像分辨率之间的权衡。使用 TOF-BSREM 算法,NEMA-IQ 体模中用[Y]微球进行的研究表明,窄能窗(460-562keV)比常规能窗(425-650keV)恢复小球中的活性浓度更好,β值为 2000。对于使用 TOF-BSREM 与β=500 对接受[Ga]柠檬酸盐的患者获得的图像,与使用 TOF-OSEM 重建的图像相比,视觉模拟量表(VAS)提高了 17%,李克特评分平均提高了 1 分。
我们的研究表明,TOF-BSREM 算法可提高低计数 PET 成像情况下的图像质量和定量准确性。但是,在扫描时,该算法中的β值需要根据每种放射性药物和计数统计数据进行调整。