Rosenberger David, Sanyal Tanmoy, Shell M Scott, van der Vegt Nico F A
Eduard Zintl Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Darmstadt , Germany.
Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States.
J Chem Theory Comput. 2019 May 14;15(5):2881-2895. doi: 10.1021/acs.jctc.8b01170. Epub 2019 Apr 29.
The application of bottom-up coarse grained (CG) models to study the equilibrium mixing behavior of liquids is rather challenging, since these models can be significantly influenced by the density or the concentration of the state chosen during parametrization. This dependency leads to low transferability in density/concentration space and has been one of the major limitations in bottom-up coarse graining. Recent approaches proposed to tackle this shortcoming range from the addition of thermodynamic constraints, to an extended ensemble parametrization, to the addition of supplementary terms to the system's Hamiltonian. To study fluid phase equilibria with bottom-up CG models, the application of local density (LD) potentials appears to be a promising approach, as shown in previous work by Sanyal and Shell [T. Sanyal, M. S. Shell, J. Phys. Chem. B, 2018, 122, 5678]. Here, we want to further explore this method and test its ability to model a system which contains structural inhomogeneities only on the molecular scale, namely, solutions of methanol and water. We find that a water-water LD potential improves the transferability of an implicit-methanol CG model toward high water concentration. Conversely, a methanol-methanol LD potential does not significantly improve the transferability of an implicit-water CG model toward high methanol concentration. These differences appear due to the presence of cooperative interactions in water at high concentrations that the LD potentials can capture. In addition, we compare two different approaches to derive our CG models, namely, relative entropy optimization and the Inverse Monte Carlo method, and formally demonstrate under which analytical and numerical assumptions these two methods yield equivalent results.
将自底向上的粗粒化(CG)模型应用于研究液体的平衡混合行为颇具挑战性,因为这些模型在参数化过程中所选择状态的密度或浓度会对其产生显著影响。这种依赖性导致在密度/浓度空间中的可转移性较低,并且一直是自底向上粗粒化的主要限制之一。最近为解决这一缺点而提出的方法包括添加热力学约束、扩展系综参数化以及在系统哈密顿量中添加补充项。如Sanyal和Shell之前的工作所示 [T. Sanyal, M. S. Shell, J. Phys. Chem. B, 2018, 122, 5678],应用局部密度(LD)势似乎是一种很有前景的研究流体相平衡的方法。在此,我们想进一步探索这种方法,并测试其对仅在分子尺度上包含结构不均匀性的系统(即甲醇和水的溶液)进行建模的能力。我们发现水 - 水LD势提高了隐式甲醇CG模型对高水浓度的可转移性。相反,甲醇 - 甲醇LD势并未显著提高隐式水CG模型对高甲醇浓度的可转移性。这些差异的出现是由于高浓度水中存在LD势能够捕捉的协同相互作用。此外,我们比较了两种推导CG模型的不同方法,即相对熵优化和逆蒙特卡罗方法,并正式证明了在哪些解析和数值假设下这两种方法会产生等效结果。