Rosenberger David, van der Vegt Nico F A
Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany.
Phys Chem Chem Phys. 2018 Feb 28;20(9):6617-6628. doi: 10.1039/c7cp08246k.
Systematically derived coarse grained (CG) models for molecular liquids do not inherently guarantee transferability to a state point different from its reference, especially when derived on the basis of structure based CG methods like Inverse Monte Carlo (IMC). Several efforts made in the past years to improve the transferability of these models focused on including thermodynamic constraints or on the application of multistate parametrization. Das and Andersen (DA) [Das et al., J. Chem. Phys., 2010, 132, 164106.] proposed a different Ansatz. They derived a correction term added to the system's Hamiltonian to reproduce the virial pressure and the volume fluctuations of the reference system in the CG resolution which does not require further adjustment of the effective pair potential. Herein, we discuss the possibility to achieve temperature transferability with IMC models for selected alkanes following the optimization of the DA approach as proposed by Dunn and Noid (DN) [Dunn et al., J. Chem. Phys., 2015, 143, 243148.]. The work focuses on a novel approach to determine the DN correction term for different state points by linear interpolation.
用于分子液体的系统衍生粗粒化(CG)模型本身并不能保证可转移到与其参考状态点不同的状态点,特别是当基于诸如逆蒙特卡罗(IMC)等基于结构的CG方法推导时。过去几年为提高这些模型的可转移性所做的一些努力集中在纳入热力学约束或多状态参数化的应用上。达斯和安德森(DA)[达斯等人,《化学物理杂志》,2010年,132卷,164106页。]提出了一种不同的方法。他们推导了一个添加到系统哈密顿量中的校正项,以在CG分辨率下重现参考系统的维里压力和体积涨落,这不需要对有效对势进行进一步调整。在此,我们讨论了按照邓恩和诺伊德(DN)[邓恩等人,《化学物理杂志》,2015年,143卷,243148页。]提出的对DA方法进行优化后,使用IMC模型实现选定烷烃温度可转移性的可能性。这项工作重点在于一种通过线性插值确定不同状态点的DN校正项的新方法。