Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium.
Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium.
Eur J Med Chem. 2019 Jul 1;173:154-166. doi: 10.1016/j.ejmech.2019.04.003. Epub 2019 Apr 5.
Aminoacyl-tRNA synthetases (aaRSs) catalyse the ATP-dependent coupling of an amino acid to its cognate tRNA. Being vital for protein translation aaRSs are considered a promising target for the development of novel antimicrobial agents. 5'-O-(N-aminoacyl)-sulfamoyl adenosine (aaSA) is a non-hydrolysable analogue of the aaRS reaction intermediate that has been shown to be a potent inhibitor of this enzyme family but is prone to chemical instability and enzymatic modification. In an attempt to improve the molecular properties of this scaffold we synthesized a series of base substituted aaSA analogues comprising cytosine, uracil and N-methyluracil targeting leucyl-, tyrosyl- and isoleucyl-tRNA synthetases. In in vitro assays seven out of the nine inhibitors demonstrated K values in the low nanomolar range. To complement the biochemical studies, X-ray crystallographic structures of Neisseria gonorrhoeae leucyl-tRNA synthetase and Escherichia coli tyrosyl-tRNA synthetase in complex with the newly synthesized compounds were determined. These highlighted a subtle interplay between the base moiety and the target enzyme in defining relative inhibitory activity. Encouraged by this data we investigated if the pyrimidine congeners could escape a natural resistance mechanism, involving acetylation of the amine of the aminoacyl group by the bacterial N-acetyltransferases RimL and YhhY. With RimL the pyrimidine congeners were less susceptible to inactivation compared to the equivalent aaSA, whereas with YhhY the converse was true. Combined the various insights resulting from this study will pave the way for the further rational design of aaRS inhibitors.
氨酰-tRNA 合成酶(aaRSs)催化氨基酸与相应 tRNA 的 ATP 依赖性偶联。作为蛋白质翻译的关键酶,aaRSs 被认为是开发新型抗菌剂的有前途的靶标。5'-O-(N-氨酰)-磺酰胺腺苷(aaSA)是 aaRS 反应中间体的非水解类似物,已被证明是该酶家族的有效抑制剂,但易发生化学不稳定性和酶修饰。为了改善该支架的分子特性,我们合成了一系列碱基取代的 aaSA 类似物,包括胞嘧啶、尿嘧啶和 N-甲基尿嘧啶,针对亮氨酰-tRNA 合成酶、酪氨酸-tRNA 合成酶和异亮氨酰-tRNA 合成酶。在体外测定中,九种抑制剂中的七种表现出纳摩尔级的 K 值。为了补充生化研究,我们测定了淋病奈瑟菌亮氨酰-tRNA 合成酶和大肠杆菌酪氨酸-tRNA 合成酶与新合成化合物复合物的 X 射线晶体结构。这些结构突出了碱基部分与靶酶之间的微妙相互作用,从而确定了相对抑制活性。受此数据的鼓舞,我们研究了嘧啶类似物是否可以逃避涉及细菌 N-乙酰转移酶 RimL 和 YhhY 对氨酰基氨基乙酰化的天然耐药机制。与 RimL 相比,嘧啶类似物对失活的敏感性低于等效的 aaSA,而与 YhhY 相反。综合本研究的各种见解,将为进一步合理设计 aaRS 抑制剂铺平道路。