Balg Christian, Blais Sébastien P, Bernier Stéphane, Huot Jonathan L, Couture Manon, Lapointe Jacques, Chênevert Robert
Département de chimie, Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Faculté des sciences et de génie, Université Laval, Québec, Canada G1K 7P4.
Bioorg Med Chem. 2007 Jan 1;15(1):295-304. doi: 10.1016/j.bmc.2006.09.056. Epub 2006 Sep 29.
The aminoacyl-beta-ketophosphonate-adenosines (aa-KPA) are stable analogs of the aminoacyl adenylates, which are high-energy intermediates in the formation of aminoacyl-tRNA catalyzed by aminoacyl-tRNA synthetases (aaRS). We have synthesized glutamyl-beta-ketophosphonate-adenosine (Glu-KPA) and glutaminyl-beta-ketophosphonate-adenosine (Gln-KPA), and have tested them as inhibitors of their cognate aaRS, and of a non-cognate aaRS. Glu-KPA is a competitive inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS) with a K(i) of 18microM with respect to its substrate glutamate, and binds at one site on this monomeric enzyme; the non-cognate Gln-KPA also binds this GluRS at one site, but is a much weaker (K(i)=2.9mM) competitive inhibitor. By contrast, Gln-KPA inhibits E. coli glutaminyl-tRNA synthetase (GlnRS) by binding competitively but weakly at two distinct sites on this enzyme (average K(i) of 0.65mM); the non-cognate Glu-KPA shows one-site weak (K(i)=2.8mM) competitive inhibition of GlnRS. These kinetic results indicate that the glutamine and the AMP modules of Gln-KPA, connected by the beta-ketophosphonate linker, cannot bind GlnRS simultaneously, and that one Gln-KPA molecule binds the AMP-binding site of GlnRS through its AMP module, whereas another Gln-KPA molecule binds the glutamine-binding site through its glutamine module. This model suggests that similar structural constraints could affect the binding of Glu-KPA to the active site of mammalian cytoplasmic GluRSs, which are evolutionarily much closer to bacterial GlnRS than to bacterial GluRS. This possibility was confirmed by the fact that Glu-KPA inhibits bovine liver GluRS 145-fold less efficiently than E. coli GluRS by competitive weak binding at two distinct sites (average K(i)=2.6mM). Moreover, these kinetic differences reveal that the active sites of bacterial GluRSs and mammalian cytoplasmic GluRSs have substantial structural differences that could be further exploited for the design of better inhibitors specific for bacterial GluRSs, promising targets for antimicrobial therapy.
氨酰基-β-酮膦酸腺苷(aa-KPA)是氨酰腺苷酸的稳定类似物,氨酰腺苷酸是氨酰-tRNA合成酶(aaRS)催化形成氨酰-tRNA过程中的高能中间体。我们合成了谷氨酰基-β-酮膦酸腺苷(Glu-KPA)和谷氨酰胺基-β-酮膦酸腺苷(Gln-KPA),并测试了它们作为其同源aaRS以及非同源aaRS抑制剂的效果。Glu-KPA是大肠杆菌谷氨酰-tRNA合成酶(GluRS)的竞争性抑制剂,相对于其底物谷氨酸,K(i)为18μM,且结合在这种单体酶的一个位点上;非同源的Gln-KPA也在一个位点结合这种GluRS,但它是一种弱得多(K(i)=2.9mM)的竞争性抑制剂。相比之下,Gln-KPA通过在该酶的两个不同位点竞争性但弱结合来抑制大肠杆菌谷氨酰胺-tRNA合成酶(GlnRS)(平均K(i)为0.65mM);非同源的Glu-KPA对GlnRS表现出单点弱(K(i)=2.8mM)竞争性抑制。这些动力学结果表明,通过β-酮膦酸连接子相连的Gln-KPA的谷氨酰胺和AMP模块不能同时结合GlnRS,并且一个Gln-KPA分子通过其AMP模块结合GlnRS的AMP结合位点,而另一个Gln-KPA分子通过其谷氨酰胺模块结合谷氨酰胺结合位点。该模型表明,类似的结构限制可能会影响Glu-KPA与哺乳动物细胞质GluRS活性位点的结合,哺乳动物细胞质GluRS在进化上与细菌GlnRS的亲缘关系比与细菌GluRS的更近。这一可能性通过以下事实得到证实:Glu-KPA通过在两个不同位点竞争性弱结合来抑制牛肝GluRS,其效率比大肠杆菌GluRS低145倍(平均K(i)=2.6mM)。此外,这些动力学差异揭示了细菌GluRS和哺乳动物细胞质GluRS的活性位点存在实质性结构差异,这可进一步用于设计对细菌GluRS更具特异性的更好抑制剂,细菌GluRS是抗菌治疗的有前景靶点。