Suppr超能文献

利用RGB无人机表型技术评估低氮条件下玉米基因型表现

Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques.

作者信息

Buchaillot Ma Luisa, Gracia-Romero Adrian, Vergara-Diaz Omar, Zaman-Allah Mainassara A, Tarekegne Amsal, Cairns Jill E, Prasanna Boddupalli M, Araus Jose Luis, Kefauver Shawn C

机构信息

Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.

AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.

出版信息

Sensors (Basel). 2019 Apr 16;19(8):1815. doi: 10.3390/s19081815.

Abstract

Maize is the most cultivated cereal in Africa in terms of land area and production, but low soil nitrogen availability often constrains yields. Developing new maize varieties with high and reliable yields using traditional crop breeding techniques in field conditions can be slow and costly. Remote sensing has become an important tool in the modernization of field-based high-throughput plant phenotyping (HTPP), providing faster gains towards the improvement of yield potential and adaptation to abiotic and biotic limiting conditions. We evaluated the performance of a set of remote sensing indices derived from red-green-blue (RGB) images along with field-based multispectral normalized difference vegetation index (NDVI) and leaf chlorophyll content (SPAD values) as phenotypic traits for assessing maize performance under managed low-nitrogen conditions. HTPP measurements were conducted from the ground and from an unmanned aerial vehicle (UAV). For the ground-level RGB indices, the strongest correlations to yield were observed with hue, greener green area (GGA), and a newly developed RGB HTPP index, NDLab (normalized difference Commission Internationale de I´Edairage (CIE)Lab index), while GGA and crop senescence index (CSI) correlated better with grain yield from the UAV. Regarding ground sensors, SPAD exhibited the closest correlation with grain yield, notably increasing in its correlation when measured in the vegetative stage. Additionally, we evaluated how different HTPP indices contributed to the explanation of yield in combination with agronomic data, such as anthesis silking interval (ASI), anthesis date (AD), and plant height (PH). Multivariate regression models, including RGB indices (R > 0.60), outperformed other models using only agronomic parameters or field sensors (R > 0.50), reinforcing RGB HTPP's potential to improve yield assessments. Finally, we compared the low-N results to the same panel of 64 maize genotypes grown under optimal conditions, noting that only 11% of the total genotypes appeared in the highest yield producing quartile for both trials. Furthermore, we calculated the grain yield loss index (GYLI) for each genotype, which showed a large range of variability, suggesting that low-N performance is not necessarily exclusive of high productivity in optimal conditions.

摘要

就种植面积和产量而言,玉米是非洲种植最广泛的谷物,但土壤中氮素有效性低常常限制产量。在田间条件下,利用传统作物育种技术培育高产且稳定的新玉米品种可能进展缓慢且成本高昂。遥感已成为基于田间的高通量植物表型分析(HTPP)现代化过程中的一项重要工具,能更快地提高产量潜力,并使作物适应非生物和生物胁迫限制条件。我们评估了一组从红 - 绿 - 蓝(RGB)图像得出的遥感指数,以及基于田间的多光谱归一化植被指数(NDVI)和叶片叶绿素含量(SPAD值)作为表型性状,用于评估在可控低氮条件下玉米的表现。HTPP测量是从地面和无人机进行的。对于地面RGB指数,与产量相关性最强的是色调、更绿绿色面积(GGA)以及新开发的RGB HTPP指数NDLab(归一化差分国际照明委员会(CIE)Lab指数),而GGA和作物衰老指数(CSI)与无人机获取的谷物产量相关性更好。对于地面传感器,SPAD与谷物产量的相关性最紧密,尤其是在营养生长阶段测量时相关性显著增加。此外,我们评估了不同的HTPP指数与农艺数据(如开花吐丝间隔(ASI)、开花日期(AD)和株高(PH))相结合时,对产量解释的贡献。多元回归模型(包括RGB指数,R > 0.60)优于仅使用农艺参数或田间传感器的其他模型(R > 0.50),这强化了RGB HTPP在改进产量评估方面的潜力。最后,我们将低氮条件下的结果与在最佳条件下种植的同一组64个玉米基因型的结果进行比较,注意到在两个试验中,只有11%的基因型出现在产量最高的四分位数中。此外,我们计算了每个基因型的谷物产量损失指数(GYLI),其显示出很大的变异性,这表明低氮条件下的表现不一定排除在最佳条件下的高生产力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae1/6514658/c4f787c6f444/sensors-19-01815-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验