Kefauver Shawn C, Vicente Rubén, Vergara-Díaz Omar, Fernandez-Gallego Jose A, Kerfal Samir, Lopez Antonio, Melichar James P E, Serret Molins María D, Araus José L
Integrative Crop Ecophysiology Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.
Syngenta España, Madrid, Spain.
Front Plant Sci. 2017 Oct 10;8:1733. doi: 10.3389/fpls.2017.01733. eCollection 2017.
With the commercialization and increasing availability of Unmanned Aerial Vehicles (UAVs) multiple rotor copters have expanded rapidly in plant phenotyping studies with their ability to provide clear, high resolution images. As such, the traditional bottleneck of plant phenotyping has shifted from data collection to data processing. Fortunately, the necessarily controlled and repetitive design of plant phenotyping allows for the development of semi-automatic computer processing tools that may sufficiently reduce the time spent in data extraction. Here we present a comparison of UAV and field based high throughput plant phenotyping (HTPP) using the free, open-source image analysis software FIJI (Fiji is just ImageJ) using RGB (conventional digital cameras), multispectral and thermal aerial imagery in combination with a matching suite of ground sensors in a study of two hybrids and one conventional barely variety with ten different nitrogen treatments, combining different fertilization levels and application schedules. A detailed correlation network for physiological traits and exploration of the data comparing between treatments and varieties provided insights into crop performance under different management scenarios. Multivariate regression models explained 77.8, 71.6, and 82.7% of the variance in yield from aerial, ground, and combined data sets, respectively.
随着无人机(UAV)的商业化以及其可用性的提高,多旋翼直升机凭借其提供清晰、高分辨率图像的能力,在植物表型研究中迅速得到广泛应用。因此,植物表型研究的传统瓶颈已从数据收集转移到数据处理。幸运的是,植物表型研究所需的可控且重复的设计使得半自动计算机处理工具得以开发,这些工具可以充分减少数据提取所花费的时间。在此,我们使用免费的开源图像分析软件FIJI(Fiji就是ImageJ),通过RGB(传统数码相机)、多光谱和热成像航空图像,并结合一套匹配的地面传感器,对两个杂交品种和一个传统大麦品种进行了十种不同氮处理(结合不同施肥水平和施用时间表)的研究,比较了无人机和基于田间的高通量植物表型分析(HTPP)。一个详细的生理性状相关网络以及对不同处理和品种之间数据的比较分析,为不同管理场景下的作物表现提供了见解。多元回归模型分别解释了航空、地面和组合数据集产量变异的77.8%、71.6%和82.7%。