Marandi Ahmadreza, den Hertog Dick
Tilburg School of Economics and Management, Tilburg University, Tilburg, The Netherlands.
Math Program. 2018;170(2):555-568. doi: 10.1007/s10107-017-1166-z. Epub 2017 Jun 12.
Adjustable robust optimization (ARO) generally produces better worst-case solutions than static robust optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we provide conditions under which the worst-case objective values of ARO and RO problems are equal. We prove that when the uncertainty is constraint-wise, the problem is convex with respect to the adjustable variables and concave with respect to the uncertain parameters, the adjustable variables lie in a convex and compact set and the uncertainty set is convex and compact, then robust solutions are also optimal for the corresponding ARO problem. Furthermore, we prove that if some of the uncertain parameters are constraint-wise and the rest are not, then under a similar set of assumptions there is an optimal decision rule for the ARO problem that does not depend on the constraint-wise uncertain parameters. Also, we show for a class of problems that using affine decision rules that depend on all of the uncertain parameters yields the same optimal objective value as when the rules depend solely on the non-constraint-wise uncertain parameters. Finally, we illustrate the usefulness of these results by applying them to convex quadratic and conic quadratic problems.
可调鲁棒优化(ARO)通常比静态鲁棒优化(RO)产生更好的最坏情况解决方案。然而,ARO在计算上比RO更困难。在本文中,我们给出了ARO和RO问题的最坏情况目标值相等的条件。我们证明,当不确定性是约束方向的,问题关于可调变量是凸的且关于不确定参数是凹的,可调变量位于凸且紧的集合中且不确定性集合是凸且紧的时,鲁棒解对于相应的ARO问题也是最优的。此外,我们证明,如果一些不确定参数是约束方向的而其余的不是,那么在类似的一组假设下,存在一个不依赖于约束方向不确定参数的ARO问题的最优决策规则。而且,对于一类问题,我们表明使用依赖于所有不确定参数的仿射决策规则与规则仅依赖于非约束方向不确定参数时产生相同的最优目标值。最后,我们通过将这些结果应用于凸二次和圆锥二次问题来说明它们的有用性。