Li Zukui, Floudas Christodoulos A
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
Ind Eng Chem Res. 2012;51(19):6769-6788. doi: 10.1021/ie201651s. Epub 2012 Apr 16.
Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, "interval+ellipsoidal" and "interval+polyhedral" uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented.
本文研究了用于鲁棒对偶优化的约束满足的概率保证。所研究的鲁棒对偶优化公式源自盒式、椭球式、多面体式、“区间+椭球式”和“区间+多面体式”不确定性集(Li, Z., Ding, R., 和 Floudas, C.A.,《鲁棒对偶优化的比较理论与计算研究:I. 鲁棒线性和鲁棒混合整数线性优化》,《工业与工程化学研究》,2011年,50卷,10567页)。对于这些鲁棒对偶优化公式,针对不同类型的不确定性特征(即有界或无界不确定性、有无详细概率分布信息),推导了它们在约束满足方面的相应概率界。这项工作的结果扩展了文献中的结果,并为鲁棒优化从业者在选择更紧的概率界以找到不太保守的鲁棒解方面提供了更大的灵活性。进行了广泛的数值研究,以比较不同概率界的紧密度和不同鲁棒对偶优化公式的保守性。讨论了鲁棒对偶优化模型选择和不确定性集大小确定的指导规则。还介绍了在生产计划和过程调度问题中的应用。