Oliveto Pietro S, Paixão Tiago, Pérez Heredia Jorge, Sudholt Dirk, Trubenová Barbora
1University of Sheffield, Sheffield, S1 4DP UK.
2IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Algorithmica. 2018;80(5):1604-1633. doi: 10.1007/s00453-017-0369-2. Epub 2017 Sep 6.
Escaping local optima is one of the major obstacles to function optimisation. Using the metaphor of a fitness landscape, local optima correspond to hills separated by fitness valleys that have to be overcome. We define a class of fitness valleys of tunable difficulty by considering their , representing the Hamming path between the two optima and their , the drop in fitness. For this function class we present a runtime comparison between stochastic search algorithms using different search strategies. The ( ) EA is a simple and well-studied evolutionary algorithm that has to jump across the valley to a point of higher fitness because it does not accept worsening moves (elitism). In contrast, the Metropolis algorithm and the Strong Selection Weak Mutation (SSWM) algorithm, a famous process in population genetics, are both able to cross the fitness valley by accepting worsening moves. We show that the runtime of the ( ) EA depends critically on the length of the valley while the runtimes of the non-elitist algorithms depend crucially on the depth of the valley. Moreover, we show that both SSWM and Metropolis can also efficiently optimise a rugged function consisting of consecutive valleys.
逃离局部最优是函数优化的主要障碍之一。用适应度景观来比喻,局部最优对应于被必须跨越的适应度低谷分隔开的山峰。我们通过考虑适应度低谷的 (此处原文缺失相关内容)来定义一类具有可调难度的适应度低谷, (此处原文缺失相关内容)表示两个最优解之间的汉明路径,以及它们的 (此处原文缺失相关内容),即适应度下降。对于这类函数,我们给出了使用不同搜索策略的随机搜索算法之间的运行时间比较。 (此处括号内原文缺失相关内容)进化算法是一种简单且经过充分研究的进化算法,由于它不接受使情况变差的移动(精英主义),所以必须跨越山谷到达适应度更高的点。相比之下, metropolis算法和强选择弱变异(SSWM)算法(群体遗传学中的一个著名过程)都能够通过接受使情况变差的移动来跨越适应度低谷。我们表明, (此处括号内原文缺失相关内容)进化算法的运行时间关键取决于山谷的长度,而非精英主义算法的运行时间关键取决于山谷的深度。此外,我们表明SSWM和metropolis算法都还能有效地优化由连续山谷组成的崎岖函数。