Suppr超能文献

如何在黑箱优化中逃离局部最优:非精英主义何时优于精英主义。

How to Escape Local Optima in Black Box Optimisation: When Non-elitism Outperforms Elitism.

作者信息

Oliveto Pietro S, Paixão Tiago, Pérez Heredia Jorge, Sudholt Dirk, Trubenová Barbora

机构信息

1University of Sheffield, Sheffield, S1 4DP UK.

2IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria.

出版信息

Algorithmica. 2018;80(5):1604-1633. doi: 10.1007/s00453-017-0369-2. Epub 2017 Sep 6.

Abstract

Escaping local optima is one of the major obstacles to function optimisation. Using the metaphor of a fitness landscape, local optima correspond to hills separated by fitness valleys that have to be overcome. We define a class of fitness valleys of tunable difficulty by considering their , representing the Hamming path between the two optima and their , the drop in fitness. For this function class we present a runtime comparison between stochastic search algorithms using different search strategies. The ( ) EA is a simple and well-studied evolutionary algorithm that has to jump across the valley to a point of higher fitness because it does not accept worsening moves (elitism). In contrast, the Metropolis algorithm and the Strong Selection Weak Mutation (SSWM) algorithm, a famous process in population genetics, are both able to cross the fitness valley by accepting worsening moves. We show that the runtime of the ( ) EA depends critically on the length of the valley while the runtimes of the non-elitist algorithms depend crucially on the depth of the valley. Moreover, we show that both SSWM and Metropolis can also efficiently optimise a rugged function consisting of consecutive valleys.

摘要

逃离局部最优是函数优化的主要障碍之一。用适应度景观来比喻,局部最优对应于被必须跨越的适应度低谷分隔开的山峰。我们通过考虑适应度低谷的 (此处原文缺失相关内容)来定义一类具有可调难度的适应度低谷, (此处原文缺失相关内容)表示两个最优解之间的汉明路径,以及它们的 (此处原文缺失相关内容),即适应度下降。对于这类函数,我们给出了使用不同搜索策略的随机搜索算法之间的运行时间比较。 (此处括号内原文缺失相关内容)进化算法是一种简单且经过充分研究的进化算法,由于它不接受使情况变差的移动(精英主义),所以必须跨越山谷到达适应度更高的点。相比之下, metropolis算法和强选择弱变异(SSWM)算法(群体遗传学中的一个著名过程)都能够通过接受使情况变差的移动来跨越适应度低谷。我们表明, (此处括号内原文缺失相关内容)进化算法的运行时间关键取决于山谷的长度,而非精英主义算法的运行时间关键取决于山谷的深度。此外,我们表明SSWM和metropolis算法都还能有效地优化由连续山谷组成的崎岖函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd0d/6438649/cb3dc23c998d/453_2017_369_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验