Heredia Jorge Pérez
Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
Evol Comput. 2018 Winter;26(4):657-686. doi: 10.1162/evco_a_00216. Epub 2017 Nov 20.
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
人们重新燃起了用更传统的数学对象(如常微分方程或马尔可夫链)对进化算法(EA)的行为进行建模的兴趣。其优势在于,由于存在成熟的方法,分析变得大为便利。然而,这通常是以忽略有关该过程的信息为代价的。在此,我们引入使用随机微分方程(SDE)来研究进化算法。与马尔可夫链不同,随机微分方程可以为随机过程的动态产生简单的分析结果,马尔可夫链虽然能给出关于动态的严谨但繁琐的表达式。另一方面,与常微分方程(ODE)不同,它们不会丢弃有关该过程随机性的信息。我们表明,这些方程特别适用于固定预算场景的分析,并给出了运行时分析中加法和乘法漂移定理的类似形式。此外,我们推导出一个新的更通用的乘法漂移定理,该定理也涵盖了非精英进化算法。这个定理同时允许得出正面和负面结果,即使在问题无法有效优化时,也能提供有关算法进展的信息。最后,我们给出了一些著名启发式算法的结果,即随机游走(RW)、随机局部搜索(RLS)、(1 + 1)进化算法、 metropolis算法(MA)以及强选择弱变异(SSWM)算法。