Suppr超能文献

一种用于评估激光粉末床熔融中粉末热性能的实验与数值相结合的方法。

A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion.

作者信息

Cheng Bo, Lane Brandon, Whiting Justin, Chou Kevin

机构信息

Industrial Engineering Department, University of Louisville, Louisville, KY 40292,

Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899,

出版信息

J Manuf Sci Eng. 2018;140. doi: 10.1115/1.4040877.

Abstract

Powder bed metal additive manufacturing (AM) utilizes a high-energy heat source scanning at the surface of a powder layer in a predefined area to be melted and solidified to fabricate parts layer by layer. It is known that powder bed metal AM is primarily a thermal process, and further, heat conduction is the dominant heat transfer mode in the process. Hence, understanding the powder bed thermal conductivity is crucial to process temperature predictions, because powder thermal conductivity could be substantially different from its solid counterpart. On the other hand, measuring the powder thermal conductivity is a challenging task. The objective of this study is to investigate the powder thermal conductivity using a method that combines a thermal diffusivity measurement technique and a numerical heat transfer model. In the experimental aspect, disk-shaped samples, with powder inside, made by a laser powder bed fusion (LPBF) system, are measured using a laser flash system to obtain the thermal diffusivity and the normalized temperature history during testing. In parallel, a finite element (FE) model is developed to simulate the transient heat transfer of the laser flash process. The numerical model was first validated using reference material testing. Then, the model is extended to incorporate powder enclosed in an LPBF sample with thermal properties to be determined using an inverse method to approximate the simulation results to the thermal data from the experiments. In order to include the powder particles' contribution in the measurement, an improved model geometry, which improves the contact condition between powder particles and the sample solid shell, has been tested. A multipoint optimization inverse heat transfer method is used to calculate the powder thermal conductivity. From this study, the thermal conductivity of a nickel alloy 625 powder in powder bed conditions is estimated to be 1.01 W/m K at 500°C. [DOI: 10.1115/1.4040877].

摘要

粉末床金属增材制造(AM)利用高能热源在粉末层表面的预定区域进行扫描,使粉末熔化并凝固,从而逐层制造零件。众所周知,粉末床金属增材制造主要是一个热过程,而且,热传导是该过程中主要的传热方式。因此,了解粉末床的热导率对于预测加工温度至关重要,因为粉末的热导率可能与其固态对应物有很大不同。另一方面,测量粉末的热导率是一项具有挑战性的任务。本研究的目的是使用一种结合热扩散率测量技术和数值传热模型的方法来研究粉末的热导率。在实验方面,使用激光粉末床熔融(LPBF)系统制作的内部装有粉末的盘形样品,通过激光闪光系统进行测量,以获得测试过程中的热扩散率和归一化温度历史。同时,开发了一个有限元(FE)模型来模拟激光闪光过程的瞬态传热。该数值模型首先通过参考材料测试进行验证。然后,将该模型扩展,纳入封装在LPBF样品中的粉末,并利用反演方法确定其热性能,以使模拟结果与实验热数据相匹配。为了在测量中纳入粉末颗粒的贡献,测试了一种改进的模型几何形状,该形状改善了粉末颗粒与样品固体外壳之间的接触条件。使用多点优化反演传热方法来计算粉末的热导率。通过本研究,估计镍合金625粉末在粉末床条件下500°C时的热导率为1.01W/m·K。[DOI: 10.1115/1.4040877]

相似文献

2
On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
J Manuf Process. 2019;47. doi: https://doi.org/10.1016/j.jmapro.2019.09.012.
3
Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis.
Materials (Basel). 2023 Sep 29;16(19):6494. doi: 10.3390/ma16196494.
8
Fabrication of TiAl-Based Intermetallic Alloy by Laser Powder Bed Fusion Using a Powder Mixture.
Materials (Basel). 2023 Mar 28;16(7):2699. doi: 10.3390/ma16072699.

引用本文的文献

1
Latest Advances in 3D Bioprinting of Cardiac Tissues.
Adv Mater Technol. 2022 Nov;7(11). doi: 10.1002/admt.202101636. Epub 2022 May 13.
2
Laser spot size and scaling laws for laser beam additive manufacturing.
J Mater Process Technol. 2022 Jan;73. doi: 10.1016/j.jmapro.2021.10.053.
3
On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
J Manuf Process. 2019;47. doi: https://doi.org/10.1016/j.jmapro.2019.09.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验