Suppr超能文献

通过界面生物正交交联,在完全集成的水凝胶通道中对分子线索和血管细胞进行空间模式化。

Spatial Patterning of Molecular Cues and Vascular Cells in Fully Integrated Hydrogel Channels via Interfacial Bioorthogonal Cross-Linking.

机构信息

Department of Biomedical Research, A.I. DuPont Hospital for Children , Nemours Children's Clinic , Wilmington , Delaware 19803 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 May 8;11(18):16402-16411. doi: 10.1021/acsami.9b04383. Epub 2019 Apr 26.

Abstract

Fully integrated hydrogel channels were fabricated via interfacial bioorthogonal cross-linking, a diffusion-controlled method for the creation and patterning of synthetic matrices based on the rapid bioorthogonal reaction between s-tetrazines (Tz) and trans-cyclooctene (TCO) dienophiles. Injecting an aqueous solution of a bisTCO cross-linker into a reservoir of tetrazine-modified hyaluronic acid (HA-Tz), while simultaneously drawing the syringe needle through the reservoir, yielded a cross-linked hydrogel channel that was mechanically robust. Fluorescent tags and biochemical signals were spatially patterned into the channel wall through time-dependent perfusion of TCO-conjugated molecules into the lumen of the channel. Different cell populations were spatially encapsulated in the channel wall via temporal alteration of cells in the HA-Tz reservoir. The interfacial approach enabled the spatial patterning of vascular cells, including human abdominal aorta endothelial cells, aortic vascular smooth muscle cells, and aortic adventitial fibroblasts, into the hydrogel channels with high viability and proper morphology in the anatomical order found in human arteries. The bioorthogonal platform does not rely on external triggers and represents the first step toward the engineering of functional and implantable arteries.

摘要

通过界面生物正交交联,制备了完全集成的水凝胶通道,这是一种基于 s-四嗪(Tz)和反式环辛烯(TCO)双烯亲核试剂之间快速生物正交反应的合成基质的创建和图案化的扩散控制方法。将双 TCO 交联剂的水溶液注入四嗪修饰透明质酸(HA-Tz)的储液器中,同时通过储液器推动注射器针,得到机械强度高的交联水凝胶通道。通过将 TCO 缀合分子随时间灌注到通道的管腔中,荧光标记物和生化信号被空间图案化到通道壁中。通过在 HA-Tz 储液器中改变细胞的时间,可以在通道壁中空间包封不同的细胞群体。界面方法能够将包括人腹主动脉内皮细胞、主动脉血管平滑肌细胞和主动脉外膜成纤维细胞在内的血管细胞以高存活率和适当的形态沿着在人体动脉中发现的解剖顺序排列到水凝胶通道中。该生物正交平台不依赖于外部触发,是构建功能性和可植入动脉的第一步。

相似文献

1
Spatial Patterning of Molecular Cues and Vascular Cells in Fully Integrated Hydrogel Channels via Interfacial Bioorthogonal Cross-Linking.
ACS Appl Mater Interfaces. 2019 May 8;11(18):16402-16411. doi: 10.1021/acsami.9b04383. Epub 2019 Apr 26.
2
Interfacial Bioorthogonal Cross-Linking.
ACS Macro Lett. 2014 Aug 19;3(8):727-731. doi: 10.1021/mz5002993. Epub 2014 Jul 14.
3
Tunable Synthesis of Hydrogel Microfibers via Interfacial Tetrazine Ligation.
Biomacromolecules. 2022 Jul 11;23(7):3017-3030. doi: 10.1021/acs.biomac.2c00504. Epub 2022 Jun 23.
4
Rapid Bioorthogonal Chemistry Enables in Situ Modulation of the Stem Cell Behavior in 3D without External Triggers.
ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26016-26027. doi: 10.1021/acsami.8b07632. Epub 2018 Jul 30.
5
Core-shell patterning of synthetic hydrogels interfacial bioorthogonal chemistry for spatial control of stem cell behavior.
Chem Sci. 2018 May 24;9(24):5394-5404. doi: 10.1039/c8sc00495a. eCollection 2018 Jun 28.
6
Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation.
Biomaterials. 2018 Oct;180:24-35. doi: 10.1016/j.biomaterials.2018.06.042. Epub 2018 Jul 4.
7
Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4330-4346. doi: 10.1021/acsbiomaterials.1c00136. Epub 2021 Jun 4.

引用本文的文献

1
Bio-orthogonal tuning of matrix properties during 3D cell culture to induce morphological and phenotypic changes.
Nat Protoc. 2025 Mar;20(3):727-778. doi: 10.1038/s41596-024-01066-z. Epub 2024 Nov 5.
2
Orthogonally Crosslinked Gelatin-Norbornene Hydrogels for Biomedical Applications.
Macromol Biosci. 2024 Feb;24(2):e2300371. doi: 10.1002/mabi.202300371. Epub 2023 Oct 6.
3
Modeling the Maturation of the Vocal Fold Lamina Propria Using a Bioorthogonally Tunable Hydrogel Platform.
Adv Healthc Mater. 2023 Nov;12(29):e2301701. doi: 10.1002/adhm.202301701. Epub 2023 Aug 13.
4
Engineering of the microenvironment to accelerate vascular regeneration.
Trends Mol Med. 2023 Jan;29(1):35-47. doi: 10.1016/j.molmed.2022.10.005. Epub 2022 Nov 9.
5
Matrix Adhesiveness Regulates Myofibroblast Differentiation from Vocal Fold Fibroblasts in a Bio-orthogonally Cross-linked Hydrogel.
ACS Appl Mater Interfaces. 2022 Nov 23;14(46):51669-51682. doi: 10.1021/acsami.2c13852. Epub 2022 Nov 11.
6
Glycopolymer and Poly(β-amino ester)-Based Amphiphilic Block Copolymer as a Drug Carrier.
Biomacromolecules. 2022 Nov 14;23(11):4896-4908. doi: 10.1021/acs.biomac.2c01076. Epub 2022 Nov 1.
7
Bioorthogonal chemistry.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00028-z. Epub 2021 Apr 15.
9
Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology.
Adv Healthc Mater. 2020 Apr;9(8):e1901255. doi: 10.1002/adhm.201901255. Epub 2020 Feb 25.

本文引用的文献

1
Rapid Bioorthogonal Chemistry Enables in Situ Modulation of the Stem Cell Behavior in 3D without External Triggers.
ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26016-26027. doi: 10.1021/acsami.8b07632. Epub 2018 Jul 30.
2
Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation.
Biomaterials. 2018 Oct;180:24-35. doi: 10.1016/j.biomaterials.2018.06.042. Epub 2018 Jul 4.
3
Core-shell patterning of synthetic hydrogels interfacial bioorthogonal chemistry for spatial control of stem cell behavior.
Chem Sci. 2018 May 24;9(24):5394-5404. doi: 10.1039/c8sc00495a. eCollection 2018 Jun 28.
4
Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise.
Cell Stem Cell. 2018 Mar 1;22(3):340-354. doi: 10.1016/j.stem.2018.02.009.
5
Aligned Nanofibrous Cell-Derived Extracellular Matrix for Anisotropic Vascular Graft Construction.
Adv Healthc Mater. 2017 May;6(10). doi: 10.1002/adhm.201601333. Epub 2017 Feb 9.
6
Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation.
J Am Chem Soc. 2016 May 11;138(18):5978-83. doi: 10.1021/jacs.6b02168. Epub 2016 Apr 27.
7
The Tissue-Engineered Vascular Graft-Past, Present, and Future.
Tissue Eng Part B Rev. 2016 Feb;22(1):68-100. doi: 10.1089/ten.teb.2015.0100. Epub 2015 Oct 8.
8
A multilayered microfluidic blood vessel-like structure.
Biomed Microdevices. 2015 Oct;17(5):88. doi: 10.1007/s10544-015-9993-2.
10
Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization.
Adv Mater. 2015 May 6;27(17):2783-90. doi: 10.1002/adma.201500360. Epub 2015 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验