Suppr超能文献

基质黏附性调控生物正交交联水凝胶中声带成纤维细胞向肌成纤维细胞的分化。

Matrix Adhesiveness Regulates Myofibroblast Differentiation from Vocal Fold Fibroblasts in a Bio-orthogonally Cross-linked Hydrogel.

机构信息

Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Nov 23;14(46):51669-51682. doi: 10.1021/acsami.2c13852. Epub 2022 Nov 11.

Abstract

Repeated mechanical and chemical insults cause an irreversible alteration of extracellular matrix (ECM) composition and properties, giving rise to vocal fold scarring that is refractory to treatment. Although it is well known that fibroblast activation to myofibroblast is the key to the development of the pathology, the lack of a physiologically relevant model of vocal folds impedes mechanistic investigations on how ECM cues promote myofibroblast differentiation. Herein, we describe a bio-orthogonally cross-linked hydrogel platform that recapitulates the alteration of matrix adhesiveness due to enhanced fibronectin deposition when vocal fold wound healing is initiated. The synthetic ECM (sECM) was established via the cycloaddition reaction of tetrazine (Tz) with slow (norbornene, Nb)- and fast (-cyclooctene, TCO)-reacting dienophiles. The relatively slow Tz-Nb ligation allowed the establishment of the covalent hydrogel network for 3D cell encapsulation, while the rapid and efficient Tz-TCO reaction enabled precise conjugation of the cell-adhesive RGDSP peptide in the hydrogel network. To mimic the dynamic changes of ECM composition during wound healing, RGDSP was conjugated to cell-laden hydrogel constructs via a diffusion-controlled bioorthognal ligation method 3 days post encapsulation. At a low RGDSP concentration (0.2 mM), fibroblasts residing in the hydrogel remained quiescent when maintained in transforming growth factor beta 1 (TGF-β1)-conditioned media. However, at a high concentration (2 mM), RGDSP potentiated TGF-β1-induced myofibroblast differentiation, as evidenced by the formation of an actin cytoskeleton network, including F-actin and alpha-smooth muscle actin. The RGDSP-driven fibroblast activation to myofibroblast was accompanied with an increase in the expression of wound healing-related genes, the secretion of profibrotic cytokines, and matrix contraction required for tissue remodeling. This work represents the first step toward the establishment of a 3D hydrogel-based cellular model for studying myofibroblast differentiation in a defined niche associated with vocal fold scarring.

摘要

反复的机械和化学刺激会导致细胞外基质 (ECM) 组成和性质的不可逆转改变,从而导致声带瘢痕形成,且这种瘢痕对治疗具有抗性。尽管众所周知,成纤维细胞向肌成纤维细胞的激活是病理学发展的关键,但缺乏生理相关的声带模型会阻碍对 ECM 线索如何促进肌成纤维细胞分化的机制研究。在此,我们描述了一种生物正交交联水凝胶平台,该平台可以模拟由于启动声带伤口愈合时纤维连接蛋白沉积增加而导致的基质粘附性改变。合成 ECM(sECM)是通过四嗪 (Tz) 与慢反应(降冰片烯,Nb)和快反应(环辛烯,TCO)二烯试剂的环加成反应建立的。相对较慢的 Tz-Nb 键合允许建立用于 3D 细胞包封的共价水凝胶网络,而快速且高效的 Tz-TCO 反应使在水凝胶网络中精确缀合细胞黏附性 RGDSP 肽成为可能。为了模拟伤口愈合过程中 ECM 组成的动态变化,在包封后 3 天,通过扩散控制的生物正交连接方法将 RGDSP 缀接到细胞负载的水凝胶构建体上。在低浓度(0.2 mM)RGDSP 下,当在转化生长因子 β1 (TGF-β1) 条件培养基中维持时,驻留在水凝胶中的成纤维细胞保持静止。然而,在高浓度(2 mM)下,RGDSP 增强了 TGF-β1 诱导的肌成纤维细胞分化,这表现为形成肌动蛋白细胞骨架网络,包括 F-肌动蛋白和α-平滑肌肌动蛋白。RGDSP 驱动的成纤维细胞向肌成纤维细胞的激活伴随着与伤口愈合相关的基因表达增加、促纤维化细胞因子的分泌以及组织重塑所需的基质收缩。这项工作代表了建立用于研究与声带瘢痕相关的特定龛位中的肌成纤维细胞分化的基于 3D 水凝胶的细胞模型的第一步。

相似文献

1
Matrix Adhesiveness Regulates Myofibroblast Differentiation from Vocal Fold Fibroblasts in a Bio-orthogonally Cross-linked Hydrogel.
ACS Appl Mater Interfaces. 2022 Nov 23;14(46):51669-51682. doi: 10.1021/acsami.2c13852. Epub 2022 Nov 11.
3
Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts.
Exp Biol Med (Maywood). 2018 Apr;243(7):601-612. doi: 10.1177/1535370218761628. Epub 2018 Mar 4.
4
Cryotherapy has antifibrotic and regenerative effects on human vocal fold fibroblasts.
Laryngoscope. 2019 Apr;129(4):E143-E150. doi: 10.1002/lary.27499. Epub 2018 Oct 12.
5
Response of fibroblasts to transforming growth factor-β1 on two-dimensional and in three-dimensional hyaluronan hydrogels.
Tissue Eng Part A. 2012 Dec;18(23-24):2528-38. doi: 10.1089/ten.TEA.2012.0094. Epub 2012 Aug 21.
6
TGFβ functionalized starPEG-heparin hydrogels modulate human dermal fibroblast growth and differentiation.
Acta Biomater. 2015 Oct;25:65-75. doi: 10.1016/j.actbio.2015.07.036. Epub 2015 Jul 26.
7
Vocal fold myofibroblast profile of scarring.
Laryngoscope. 2016 Mar;126(3):E110-7. doi: 10.1002/lary.25581. Epub 2015 Sep 7.
8
Antifibrotic effects of eupatilin on TGF-β1-treated human vocal fold fibroblasts.
PLoS One. 2021 Mar 25;16(3):e0249041. doi: 10.1371/journal.pone.0249041. eCollection 2021.
9
Hyaluronan Controls the Deposition of Fibronectin and Collagen and Modulates TGF-β1 Induction of Lung Myofibroblasts.
Matrix Biol. 2015 Mar;42:74-92. doi: 10.1016/j.matbio.2014.12.001. Epub 2014 Dec 27.

引用本文的文献

1
Novel application of bone marrow mesenchymal stem cells combined with hepatocyte growth factor on subacute vocal fold wound healing.
World J Otorhinolaryngol Head Neck Surg. 2024 Sep 16;11(2):264-275. doi: 10.1002/wjo2.215. eCollection 2025 Jun.
2
Bio-orthogonal tuning of matrix properties during 3D cell culture to induce morphological and phenotypic changes.
Nat Protoc. 2025 Mar;20(3):727-778. doi: 10.1038/s41596-024-01066-z. Epub 2024 Nov 5.
4
Adiponectin inhibits TGF-β1-induced skin fibroblast proliferation and phenotype transformation via the p38 MAPK signaling pathway.
Open Life Sci. 2023 Aug 10;18(1):20220679. doi: 10.1515/biol-2022-0679. eCollection 2023.
5
A Promotion Role of MIR31 in the Process of Vocal Fold Wound Healing.
PPAR Res. 2023 Aug 8;2023:4672827. doi: 10.1155/2023/4672827. eCollection 2023.
6
Modeling the Maturation of the Vocal Fold Lamina Propria Using a Bioorthogonally Tunable Hydrogel Platform.
Adv Healthc Mater. 2023 Nov;12(29):e2301701. doi: 10.1002/adhm.202301701. Epub 2023 Aug 13.

本文引用的文献

2
Core-Shell Microfibers via Bioorthogonal Layer-by-Layer Assembly.
ACS Macro Lett. 2020 Sep 15;9(9):1369-1375. doi: 10.1021/acsmacrolett.0c00515. Epub 2020 Aug 31.
3
Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.
Signal Transduct Target Ther. 2021 Dec 16;6(1):426. doi: 10.1038/s41392-021-00830-x.
4
RGDSP-Decorated Hyaluronate Hydrogels Facilitate Rapid 3D Expansion of Amylase-Expressing Salivary Gland Progenitor Cells.
ACS Biomater Sci Eng. 2021 Dec 13;7(12):5749-5761. doi: 10.1021/acsbiomaterials.1c00745. Epub 2021 Nov 15.
5
Actin Cytoskeleton and Regulation of TGFβ Signaling: Exploring Their Links.
Biomolecules. 2021 Feb 23;11(2):336. doi: 10.3390/biom11020336.
6
Hydrogel-Supported, Engineered Model of Vocal Fold Epithelium.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4305-4317. doi: 10.1021/acsbiomaterials.0c01741. Epub 2021 Feb 26.
7
Engineered Fibrous Networks To Investigate the Influence of Fiber Mechanics on Myofibroblast Differentiation.
ACS Biomater Sci Eng. 2019 Aug 12;5(8):3899-3908. doi: 10.1021/acsbiomaterials.8b01276. Epub 2019 Mar 25.
8
Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology.
Front Bioeng Biotechnol. 2020 Dec 22;8:609653. doi: 10.3389/fbioe.2020.609653. eCollection 2020.
9
Induction of Fibrogenic Phenotype in Human Mesenchymal Stem Cells by Connective Tissue Growth Factor in a Hydrogel Model of Soft Connective Tissue.
ACS Biomater Sci Eng. 2019 Sep 9;5(9):4531-4541. doi: 10.1021/acsbiomaterials.9b00425. Epub 2019 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验