Suppr超能文献

对 Toda 格点哈密顿系统的数值模拟:高阶辛启发式观点。

Numerical simulations for the Toda lattices Hamiltonian system: Higher order symplectic illustrative perspective.

机构信息

Seksjon for matematikk, FLU, Nord Universitet, N-8049 Bodø, Norway.

Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.

出版信息

PLoS One. 2019 Apr 18;14(4):e0215054. doi: 10.1371/journal.pone.0215054. eCollection 2019.

Abstract

In this paper we apply some higher order symplectic numerical methods to analyze the dynamics of 3-site Toda lattices (reduced to relative coordinates). We present benchmark numerical simulations that has been generated from the HOMsPY (Higher Order Methods in Python) library. These results provide detailed information of the underlying Hamiltonian system. These numerical simulations reinforce the claim that the symplectic numerical methods are highly accurate qualitatively and quantitatively when applied not only to Hamiltonian of the Toda lattices, but also to other physical models. Excepting exactly integrable models, these symplectic numerical schemes are superior, efficient, energy preserving and suitable for a long time integrations, unlike standard non-symplectic numerical methods which lacks preservation of energy (and other constants of motion, when such exist).

摘要

在本文中,我们应用一些高阶辛数值方法来分析 3 位点 Toda 晶格(简化为相对坐标)的动力学。我们呈现了来自 HOMsPY(Python 中的高阶方法)库生成的基准数值模拟。这些结果提供了基础哈密顿系统的详细信息。这些数值模拟证实了辛数值方法不仅在应用于 Toda 晶格的哈密顿量时具有高度的准确性,而且在应用于其他物理模型时也是如此。除了完全可积模型之外,这些辛数值方案在长时间积分方面具有优越性、高效性、能量守恒性和适用性,而标准的非辛数值方法则缺乏能量守恒性(以及其他运动常数,当存在时)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4e/6472940/5e76cad0baae/pone.0215054.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验