Danieli Carlo, Yuzbashyan Emil A, Altshuler Boris L, Patra Aniket, Flach Sergej
Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA.
Chaos. 2024 Mar 1;34(3). doi: 10.1063/5.0171261.
We use the Toda chain model to demonstrate that numerical simulation of integrable Hamiltonian dynamics using time discretization destroys integrability and induces dynamical chaos. Specifically, we integrate this model with various symplectic integrators parametrized by the time step τ and measure the Lyapunov time TΛ (inverse of the largest Lyapunov exponent Λ). A key observation is that TΛ is finite whenever τ is finite but diverges when τ→0. We compare the Toda chain results with the nonintegrable Fermi-Pasta-Ulam-Tsingou chain dynamics. In addition, we observe a breakdown of the simulations at times TB≫TΛ due to certain positions and momenta becoming extremely large ("Not a Number"). This phenomenon originates from the periodic driving introduced by symplectic integrators and we also identify the concrete mechanism of the breakdown in the case of the Toda chain.
我们使用托达链模型来证明,通过时间离散化对可积哈密顿动力学进行数值模拟会破坏可积性并引发动力学混沌。具体而言,我们使用由时间步长τ参数化的各种辛积分器对该模型进行积分,并测量李雅普诺夫时间TΛ(最大李雅普诺夫指数Λ的倒数)。一个关键的观察结果是,只要τ有限,TΛ就是有限的,但当τ→0时会发散。我们将托达链的结果与不可积的费米 - 帕斯塔 - 乌拉姆 - 辛格链动力学进行比较。此外,由于某些位置和动量变得极大(“非数字”),我们观察到在时间TB≫TΛ时模拟会崩溃。这种现象源于辛积分器引入的周期性驱动,并且我们还确定了托达链情况下崩溃的具体机制。