Suppr超能文献

一种用于反应扩散系统的微观介观随机模拟的混合方法。

A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems.

机构信息

Department of Mathematics, Ryerson University, 350 Victoria St, M5B 2K3 Toronto, Canada.

Department of Mathematics, Ryerson University, 350 Victoria St, M5B 2K3 Toronto, Canada.

出版信息

Math Biosci. 2019 Jun;312:23-32. doi: 10.1016/j.mbs.2019.04.001. Epub 2019 Apr 15.

Abstract

The present paper introduces a new micro-meso hybrid algorithm based on the Ghost Cell Method concept in which the microscopic subdomain is governed by the Reactive Multi-Particle Collision (RMPC) dynamics. The mesoscopic subdomain is modeled using the Reaction-Diffusion Master Equation (RDME). The RDME is solved by means of the Inhomogeneous Stochastic Simulation Algorithm. No hybrid algorithm has hitherto used the RMPC dynamics for modeling reactions and the trajectories of each individual particle. The RMPC is faster than other molecular based methods and has the advantage of conserving mass, energy and momentum in the collision and free streaming steps. The new algorithm is tested on three reaction-diffusion systems. In all the systems studied, very good agreement with the deterministic solutions of the corresponding differential equations is obtained. In addition, it has been shown that proper discretization of the computational domain results in significant speed-ups in comparison with the full RMPC algorithm.

摘要

本文提出了一种新的基于幽灵细胞方法概念的微介混合算法,其中微观子域由反应多粒子碰撞(RMPC)动力学控制。介观子域采用反应-扩散主方程(RDME)建模。RDME 通过非均匀随机模拟算法求解。迄今为止,没有混合算法使用 RMPC 动力学来模拟反应和每个粒子的轨迹。RMPC 比其他基于分子的方法更快,并且在碰撞和自由流步骤中具有守恒质量、能量和动量的优点。新算法在三个反应扩散系统上进行了测试。在所研究的所有系统中,与相应微分方程的确定性解非常吻合。此外,还表明,与完整的 RMPC 算法相比,适当的计算域离散化可以显著提高速度。

相似文献

1
A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems.
Math Biosci. 2019 Jun;312:23-32. doi: 10.1016/j.mbs.2019.04.001. Epub 2019 Apr 15.
2
Reactive multi-particle collision dynamics with reactive boundary conditions.
Phys Biol. 2018 May 9;15(4):046007. doi: 10.1088/1478-3975/aabc35.
4
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
BMC Syst Biol. 2017 Mar 14;11(Suppl 3):21. doi: 10.1186/s12918-017-0401-9.
6
Accuracy Analysis of Hybrid Stochastic Simulation Algorithm on Linear Chain Reaction Systems.
Bull Math Biol. 2019 Aug;81(8):3024-3052. doi: 10.1007/s11538-018-0461-z. Epub 2018 Jul 10.
7
Simulation Strategies for Calcium Microdomains and Calcium Noise.
Adv Exp Med Biol. 2020;1131:771-797. doi: 10.1007/978-3-030-12457-1_31.
8
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Mol Biosyst. 2017 Nov 21;13(12):2672-2686. doi: 10.1039/c7mb00426e.
9
Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods.
J Chem Phys. 2011 Dec 28;135(24):244103. doi: 10.1063/1.3666988.

引用本文的文献

1
A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement.
PLoS Comput Biol. 2021 Jul 15;17(7):e1008525. doi: 10.1371/journal.pcbi.1008525. eCollection 2021 Jul.
2
Stochastic self-tuning hybrid algorithm for reaction-diffusion systems.
J Chem Phys. 2019 Dec 28;151(24):244117. doi: 10.1063/1.5125022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验