Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
J Mol Cell Cardiol. 2019 May;130:170-183. doi: 10.1016/j.yjmcc.2019.04.011. Epub 2019 Apr 15.
Hyperglycemia-induced apoptosis plays a critical role in the pathogenesis of diabetic cardiomyopathy (DCM). Our previous study demonstrated that ivabradine, a selective I current antagonist, significantly attenuated myocardial apoptosis in diabetic mice, but the underlying mechanisms remained unknown. This study investigated the underlying mechanisms by which ivabradine exerts anti-apoptotic effects in experimental DCM. Pretreatment with ivabradine, but not ZD7288 (an established I current blocker), profoundly inhibited high glucose-induced apoptosis via inactivation of nuclear factor (NF)-κB signaling in neonatal rat cardiomyocytes. The effect was abolished by transfection of an siRNA targeting protein phosphatase 2A catalytic subunit (PP2Ac). In streptozotocin-induced diabetic mice, ivabradine treatment significantly inhibited left ventricular hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and HCN4 (major components of the I current), activated PP2Ac, and attenuated NF-κB signaling activation and apoptosis, in line with improved histological abnormalities, fibrosis, and cardiac dysfunction without affecting hyperglycemia. These effects were not observed in diabetic mice with virus-mediated knockdown of HCN2 or HCN4 after myocardial injection, but were alleviated by knockdown of PP2Acα. Molecular docking and phosphatase activity assay confirmed direct binding of ivabradine to, and activation of, PP2Ac. In conclusion, ivabradine may directly activate PP2Ac, leading to inhibition of NF-κB signaling activation, myocardial apoptosis, and fibrosis, and eventually improving cardiac function in experimental DCM. Taken together, the present findings suggest that ivabradine may be a promising drug for treatment of DCM.
高血糖诱导的细胞凋亡在糖尿病心肌病 (DCM) 的发病机制中起关键作用。我们之前的研究表明,伊伐布雷定是一种选择性 I 电流拮抗剂,可显著减轻糖尿病小鼠的心肌细胞凋亡,但潜在机制尚不清楚。本研究旨在探讨伊伐布雷定在实验性 DCM 中发挥抗凋亡作用的潜在机制。在新生大鼠心肌细胞中,伊伐布雷定预处理而非 ZD7288(一种已建立的 I 电流阻断剂)可通过抑制核因子 (NF)-κB 信号通路显著抑制高糖诱导的细胞凋亡。用靶向蛋白磷酸酶 2A 催化亚基 (PP2Ac) 的 siRNA 转染可消除这种作用。在链脲佐菌素诱导的糖尿病小鼠中,伊伐布雷定治疗可显著抑制左心室超极化激活环核苷酸门控通道 2 (HCN2) 和 HCN4(I 电流的主要成分),激活 PP2Ac,并抑制 NF-κB 信号通路激活和细胞凋亡,同时改善组织学异常、纤维化和心功能障碍,而不影响高血糖。在心肌注射病毒介导的 HCN2 或 HCN4 敲低的糖尿病小鼠中未观察到这些作用,但敲低 PP2Acα 可减轻这些作用。分子对接和磷酸酶活性测定证实了伊伐布雷定与 PP2Ac 的直接结合和激活。综上所述,伊伐布雷定可能通过直接激活 PP2Ac,抑制 NF-κB 信号通路激活、心肌细胞凋亡和纤维化,从而改善实验性 DCM 中的心脏功能。总之,这些发现表明伊伐布雷定可能是治疗 DCM 的一种有前途的药物。