Suppr超能文献

具有延迟变量嵌入的拓扑时间序列分析

Topological time-series analysis with delay-variant embedding.

作者信息

Tran Quoc Hoan, Hasegawa Yoshihiko

机构信息

Department of Information and Communication Engineering, Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656, Japan.

出版信息

Phys Rev E. 2019 Mar;99(3-1):032209. doi: 10.1103/PhysRevE.99.032209.

Abstract

Identifying the qualitative changes in time-series data provides insights into the dynamics associated with such data. Such qualitative changes can be detected through topological approaches, which first embed the data into a high-dimensional space using a time-delay parameter and subsequently extract topological features describing the shape of the data from the embedded points. However, the essential topological features that are extracted using a single time delay are considered to be insufficient for evaluating the aforementioned qualitative changes, even when a well-selected time delay is used. We therefore propose a delay-variant embedding method that constructs the extended topological features by considering the time delay as a variable parameter instead of considering it as a single fixed value. This delay-variant embedding method reveals multiple-timescale patterns in a time series by allowing the observation of the variations in topological features, with the time delay serving as an additional dimension in the topological feature space. We theoretically prove that the constructed topological features are robust when the time series is perturbed by noise. Furthermore, we combine these features with the kernel technique in machine learning algorithms to classify the general time-series data. We demonstrate the effectiveness of our method for classifying the synthetic noisy biological and real time-series data. Our method outperforms a method that is based on a single time delay and, surprisingly, achieves the highest classification accuracy on an average among the standard time-series analysis techniques.

摘要

识别时间序列数据中的定性变化有助于深入了解与此类数据相关的动态特性。此类定性变化可通过拓扑方法检测,该方法首先使用时间延迟参数将数据嵌入到高维空间,随后从嵌入点中提取描述数据形状的拓扑特征。然而,即使使用精心选择的时间延迟,仅使用单个时间延迟提取的基本拓扑特征也被认为不足以评估上述定性变化。因此,我们提出一种延迟变量嵌入方法,该方法通过将时间延迟视为可变参数而非单个固定值来构建扩展拓扑特征。这种延迟变量嵌入方法通过允许观察拓扑特征的变化,揭示时间序列中的多时间尺度模式,其中时间延迟作为拓扑特征空间中的一个额外维度。我们从理论上证明,当时间序列受到噪声干扰时,所构建的拓扑特征具有鲁棒性。此外,我们将这些特征与机器学习算法中的核技术相结合,对一般时间序列数据进行分类。我们展示了我们的方法对合成噪声生物数据和实际时间序列数据进行分类的有效性。我们的方法优于基于单个时间延迟的方法,令人惊讶的是,在标准时间序列分析技术中,平均而言达到了最高的分类准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验