Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
Sci Rep. 2024 Nov 11;14(1):27562. doi: 10.1038/s41598-024-79002-0.
The nonlinear progression of COVID-19 positive cases, their fluctuations, the correlations in amplitudes and phases across different regions, along with seasonality or periodicity, pose challenges to thoroughly examining the data for revealing similarities or detecting anomalous trajectories. To address this, we conducted a nonlinear time series analysis combining wavelet and persistent homology to detect the qualitative properties underlying COVID-19 daily infection numbers at the state level from the pandemic's onset to June 2024 in Malaysia. The first phase involved investigating the evolution of daily confirmed cases by state in the time-frequency domain using wavelets. Subsequently, a topological feature-based time series clustering is performed by reconstructing a higher-dimensional phase space through a delay embedding method. Our findings reveal a prominent 7-day periodicity in case numbers from mid-2021 to the end of 2022. The state-wise daily cases are moderately correlated in both amplitudes and phases during the Delta and Omicron waves. Biweekly averaged data significantly enhances the detection of topological loops associated with these waves. Selangor demonstrates unique case trajectories, while Pahang shows the highest similarity with other states. This methodological framework provides a more detailed understanding of epidemiological time series data, offering valuable insights for preparing for future public health crises.
新冠病毒阳性病例的非线性进展、波动、不同地区之间幅度和相位的相关性,以及季节性或周期性,给彻底检查数据以揭示相似性或检测异常轨迹带来了挑战。为了解决这个问题,我们进行了非线性时间序列分析,结合小波和持久同调,以检测从大流行开始到 2024 年 6 月马来西亚各州 COVID-19 每日感染人数的潜在定性特征。第一阶段涉及使用小波在时频域中研究各州每日确诊病例的演变。随后,通过延迟嵌入方法构建更高维相空间,进行基于拓扑特征的时间序列聚类。我们的研究结果表明,从 2021 年年中到 2022 年底,病例数量存在明显的 7 天周期性。在 Delta 和 Omicron 波期间,各州每日病例的幅度和相位中度相关。双周平均数据显著增强了与这些波相关的拓扑环的检测。雪兰莪州表现出独特的病例轨迹,而彭亨州与其他州的相似度最高。这种方法框架提供了对传染病时间序列数据的更详细理解,为未来的公共卫生危机做好准备提供了有价值的见解。