Suppr超能文献

用于刻画复杂网络结构的标度变化拓扑信息。

Scale-variant topological information for characterizing the structure of complex networks.

机构信息

Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan.

出版信息

Phys Rev E. 2019 Sep;100(3-1):032308. doi: 10.1103/PhysRevE.100.032308.

Abstract

The structure of real-world networks is usually difficult to characterize owing to the variation of topological scales, the nondyadic complex interactions, and the fluctuations in the network. We aim to address these problems by introducing a general framework using a method based on topological data analysis. By considering the diffusion process at a single specified timescale in a network, we map the network nodes to a finite set of points that contains the topological information of the network at a single scale. Subsequently, we study the shape of these point sets over variable timescales that provide scale-variant topological information, to understand the varying topological scales and the complex interactions in the network. We conduct experiments on synthetic and real-world data to demonstrate the effectiveness of the proposed framework in identifying network models, classifying real-world networks, and detecting transition points in time-evolving networks. Overall, our study presents a unified analysis that can be applied to more complex network structures, as in the case of multilayer and multiplex networks.

摘要

由于拓扑尺度的变化、非二元复杂相互作用以及网络的波动,现实世界网络的结构通常难以描述。我们旨在通过引入一个使用基于拓扑数据分析的方法的通用框架来解决这些问题。通过在网络中考虑单个指定时间尺度上的扩散过程,我们将网络节点映射到有限的点集,该点集包含单个尺度上的网络拓扑信息。随后,我们研究这些点集在不同时间尺度上的形状,这些形状提供了尺度变化的拓扑信息,以了解网络中的变化拓扑尺度和复杂相互作用。我们在合成和真实世界数据上进行实验,以验证所提出框架在识别网络模型、分类真实世界网络以及检测时变网络中的转折点方面的有效性。总的来说,我们的研究提出了一种统一的分析方法,可以应用于更复杂的网络结构,如多层和多重网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验