Efimenko E S, Bashinov A V, Gonoskov A A, Bastrakov S I, Muraviev A A, Meyerov I B, Kim A V, Sergeev A M
Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia.
Lobachevsky State University of Nizhni Novgorod, 603950 Nizhny Novgorod, Russia.
Phys Rev E. 2019 Mar;99(3-1):031201. doi: 10.1103/PhysRevE.99.031201.
The cascaded production and dynamics of electron-positron plasma in ultimately focused laser fields of extreme intensity are studied by three-dimensional particle-in-cell simulations with the account of the relevant processes of quantum electrodynamics (QED). We show that, if the laser facility provides a total power above 20 PW, it is possible to trigger not only a QED cascade but also pinching in the produced electron-positron plasma. The plasma self-compression in this case leads to an abrupt rise of the peak density and magnetic (electric) field up to at least 10^{28}cm^{-3} and 1/20 (1/40) of the Schwinger field, respectively. Determining the actual limits and physics of this process might require quantum treatment beyond the used standard semiclassical approach. The proposed setup can thus provide extreme conditions for probing and exploring fundamental physics of the matter and vacuum.
通过考虑量子电动力学(QED)的相关过程,利用三维粒子模拟研究了在极强的最终聚焦激光场中电子 - 正电子等离子体的级联产生和动力学。我们表明,如果激光装置提供的总功率超过20拍瓦,不仅有可能触发QED级联,还能使产生的电子 - 正电子等离子体发生箍缩。在这种情况下,等离子体的自压缩会导致峰值密度和磁场(电场)突然上升,分别至少达到10²⁸厘米⁻³和施温格场的1/20(1/40)。确定这一过程的实际极限和物理机制可能需要超越所使用的标准半经典方法的量子处理。因此,所提出的装置可以为探索物质和真空的基本物理提供极端条件。