Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Zografos, Athens, Greece.
Phys Rev E. 2019 Mar;99(3-1):032415. doi: 10.1103/PhysRevE.99.032415.
We study periodic, quasiperiodic (Thue-Morse, Fibonacci, period doubling, Rudin-Shapiro), fractal (Cantor, generalized Cantor), Kolakoski, and random binary sequences using a tight-binding wire model, where a site is a monomer (e.g., in DNA, a base pair). We use B-DNA as our prototype system. All sequences have purines, guanine (G) or adenine (A), on the same strand, i.e., our prototype binary alphabet is {G,A}. Our aim is to examine the influence of sequence intricacy and magnitude of parameters on energy structure, localization, and charge transport. We study quantities such as autocorrelation function, eigenspectra, density of states, Lyapunov exponents, transmission coefficients, and current-voltage curves. We show that the degree of sequence intricacy and the presence of correlations decisively affect the aforementioned physical properties. Periodic segments have enhanced transport properties. Specifically, in homogeneous sequences transport efficiency is maximum. There are several deterministic aperiodic sequences that can support significant currents, depending on the Fermi level of the leads. Random sequences is the less efficient category.
我们使用紧束缚线模型研究了周期性、准周期性(Thue-Morse、Fibonacci、倍周期、Rudin-Shapiro)、分形(Cantor、广义 Cantor)、Kolakoski 和随机二进制序列,其中一个位点是一个单体(例如,在 DNA 中,一个碱基对)。我们使用 B-DNA 作为原型系统。所有序列都在同一条链上具有嘌呤,即鸟嘌呤 (G) 或腺嘌呤 (A),也就是说,我们的原型二进制字母表是 {G,A}。我们的目的是研究序列复杂性和参数大小对能量结构、局域化和电荷输运的影响。我们研究了自相关函数、本征谱、态密度、Lyapunov 指数、传输系数和电流-电压曲线等量。我们表明,序列复杂性的程度和相关性的存在决定性地影响了上述物理性质。周期性片段具有增强的传输性质。具体来说,在均匀序列中,传输效率最高。有几个确定性的非周期性序列可以根据引线的费米能级支持显著的电流。随机序列的效率最低。