Mantela Marilena, Simserides Constantinos, Di Felice Rosa
Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece.
Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
Materials (Basel). 2021 Aug 30;14(17):4930. doi: 10.3390/ma14174930.
To describe the molecular electronic structure of nucleic acid bases and other heterocycles, we employ the Linear Combination of Atomic Orbitals (LCAO) method, considering the molecular wave function as a linear combination of all valence orbitals, i.e., 2s, 2px, 2py, 2pz orbitals for C, N, and O atoms and 1s orbital for H atoms. Regarding the diagonal matrix elements (also known as on-site energies), we introduce a novel parameterization. For the non-diagonal matrix elements referring to neighboring atoms, we employ the Slater-Koster two-center interaction transfer integrals. We use Harrison-type expressions with factors slightly modified relative to the original. We compare our LCAO predictions for the ionization and excitation energies of heterocycles with those obtained from Ionization Potential Equation of Motion Coupled Cluster with Singles and Doubles (IP-EOMCCSD)/aug-cc-pVDZ level of theory and Completely Normalized Equation of Motion Coupled Cluster with Singles, Doubles, and non-iterative Triples (CR-EOMCCSD(T))/aug-cc-pVDZ level of theory, respectively, (vertical values), as well as with available experimental data. Similarly, we calculate the transfer integrals between subsequent base pairs, to be used for a Tight-Binding (TB) wire model description of charge transfer and transport along or B-DNA. Taking into account all valence orbitals, we are in the position to treat deflection from the planar geometry, e.g., DNA structural variability, a task impossible for the plane Hückel approach (i.e., using only 2pz orbitals). We show the effects of structural deformations utilizing a 20mer evolved by Molecular Dynamics.
为了描述核酸碱基和其他杂环的分子电子结构,我们采用原子轨道线性组合(LCAO)方法,将分子波函数视为所有价轨道的线性组合,即碳原子、氮原子和氧原子的2s、2px、2py、2pz轨道以及氢原子的1s轨道。关于对角矩阵元(也称为在位能量),我们引入了一种新颖的参数化方法。对于涉及相邻原子的非对角矩阵元,我们采用斯莱特 - 科斯特双中心相互作用转移积分。我们使用哈里森型表达式,其因子相对于原始表达式略有修改。我们将杂环的电离能和激发能的LCAO预测结果分别与通过单双激发运动方程耦合簇电离势(IP - EOMCCSD)/aug - cc - pVDZ理论水平以及完全归一化单双非迭代三激发运动方程耦合簇(CR - EOMCCSD(T))/aug - cc - pVDZ理论水平获得的结果(垂直值)以及可用的实验数据进行比较。同样,我们计算后续碱基对之间的转移积分,以用于电荷转移和沿A或B - DNA传输的紧束缚(TB)线模型描述。考虑到所有价轨道,我们能够处理平面几何结构的偏差,例如DNA结构变异性,这是平面休克尔方法(即仅使用2pz轨道)无法完成的任务。我们利用分子动力学演化的20聚体展示了结构变形的影响。