Suppr超能文献

在. 中异染色质蛋白 1(Swi6)和 DDK 的染色体分离中重叠的作用

Overlapping Roles in Chromosome Segregation for Heterochromatin Protein 1 (Swi6) and DDK in .

机构信息

Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-2910.

Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-2910

出版信息

Genetics. 2019 Jun;212(2):417-430. doi: 10.1534/genetics.119.302125. Epub 2019 Apr 18.

Abstract

Fission yeast Swi6 is a human HP1 homolog that plays important roles in multiple cellular processes. In addition to its role in maintaining heterochromatin silencing, Swi6 is required for cohesin enrichment at the pericentromere. Loss of Swi6 leads to abnormal mitosis, including defects in the establishment of bioriented sister kinetochores and microtubule attachment. Swi6 interacts with Dfp1, a regulatory subunit of DBF4-dependent kinase (DDK), and failure to recruit Dfp1 to the pericentromere results in late DNA replication. Using the mutant allele, which specifically disrupts Swi6-Dfp1 association, we investigated how interaction between Swi6 and Dfp1 affects chromosome dynamics. We find that disrupting the interaction between Swi6 and Dfp1 delays mitotic progression in a spindle assembly checkpoint-dependent manner. Artificially tethering Dfp1 back to the pericentromere is sufficient to restore normal spindle length and rescue segregation defects in -deleted cells. However, Swi6 is necessary for centromeric localization of Rad21-GFP independent of DDK. Our data indicate that DDK contributes to mitotic chromosome segregation in pathways that partly overlap with, but can be separated from both, Swi6 and the other HP1 homolog, Chp2.

摘要

裂殖酵母 Swi6 是一种人类 HP1 同源物,在多种细胞过程中发挥重要作用。除了在维持异染色质沉默中的作用外,Swi6 还需要在着丝粒周围富集黏合蛋白。Swi6 的缺失会导致异常有丝分裂,包括在建立双定向姐妹动粒和微管附着方面的缺陷。Swi6 与 Dfp1 相互作用,Dfp1 是依赖 DBF4 的激酶 (DDK) 的调节亚基,不能将 Dfp1 募集到着丝粒周围会导致后期 DNA 复制。使用专门破坏 Swi6-Dfp1 相互作用的 突变等位基因,我们研究了 Swi6 和 Dfp1 之间的相互作用如何影响染色体动力学。我们发现,破坏 Swi6 和 Dfp1 之间的相互作用会以纺锤体组装检查点依赖的方式延迟有丝分裂进程。人为地将 Dfp1 重新束缚到着丝粒周围足以恢复正常的纺锤体长度,并挽救 缺失细胞中的分离缺陷。然而,Swi6 对于 Rad21-GFP 的着丝粒定位是必需的,而与 DDK 无关。我们的数据表明,DDK 通过与 Swi6 和其他 HP1 同源物 Chp2 部分重叠但又可分离的途径有助于有丝分裂染色体分离。

相似文献

1
Overlapping Roles in Chromosome Segregation for Heterochromatin Protein 1 (Swi6) and DDK in .
Genetics. 2019 Jun;212(2):417-430. doi: 10.1534/genetics.119.302125. Epub 2019 Apr 18.
2
Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres.
Nat Cell Biol. 2003 Dec;5(12):1111-6. doi: 10.1038/ncb1069. Epub 2003 Nov 16.
3
Heterochromatin links to centromeric protection by recruiting shugoshin.
Nature. 2008 Sep 11;455(7210):251-5. doi: 10.1038/nature07217.
5
Interaction of APC/C-E3 ligase with Swi6/HP1 and Clr4/Suv39 in heterochromatin assembly in fission yeast.
J Biol Chem. 2009 Mar 13;284(11):7165-76. doi: 10.1074/jbc.M806461200. Epub 2008 Dec 30.
6
Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8998-9003. doi: 10.1073/pnas.0813063106. Epub 2009 May 14.
8
Biochemical Basis for Distinct Roles of the Heterochromatin Proteins Swi6 and Chp2.
J Mol Biol. 2017 Nov 24;429(23):3666-3677. doi: 10.1016/j.jmb.2017.09.012. Epub 2017 Sep 20.
10
Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast.
Nat Cell Biol. 2002 Jan;4(1):89-93. doi: 10.1038/ncb739.

引用本文的文献

1
A visual atlas of meiotic protein dynamics in living fission yeast.
Open Biol. 2021 Feb;11(2):200357. doi: 10.1098/rsob.200357. Epub 2021 Feb 24.
2
Checkpoint Regulation of Nuclear Tos4 Defines S Phase Arrest in Fission Yeast.
G3 (Bethesda). 2020 Jan 7;10(1):255-266. doi: 10.1534/g3.119.400726.

本文引用的文献

2
Biochemical Basis for Distinct Roles of the Heterochromatin Proteins Swi6 and Chp2.
J Mol Biol. 2017 Nov 24;429(23):3666-3677. doi: 10.1016/j.jmb.2017.09.012. Epub 2017 Sep 20.
3
The Kinetochore Receptor for the Cohesin Loading Complex.
Cell. 2017 Sep 21;171(1):72-84.e13. doi: 10.1016/j.cell.2017.08.017.
4
Rescue from replication stress during mitosis.
Cell Cycle. 2017 Apr 3;16(7):613-633. doi: 10.1080/15384101.2017.1288322. Epub 2017 Feb 6.
5
Centromere Stability: The Replication Connection.
Genes (Basel). 2017 Jan 18;8(1):37. doi: 10.3390/genes8010037.
6
Mechanisms Governing DDK Regulation of the Initiation of DNA Replication.
Genes (Basel). 2016 Dec 22;8(1):3. doi: 10.3390/genes8010003.
7
DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach.
Nucleic Acids Res. 2016 Oct 14;44(18):8786-8798. doi: 10.1093/nar/gkw626. Epub 2016 Jul 12.
8
Microscopy techniques to examine DNA replication in fission yeast.
Methods Mol Biol. 2015;1300:13-41. doi: 10.1007/978-1-4939-2596-4_2.
9
The CINs of the centromere.
Biochem Soc Trans. 2013 Dec;41(6):1706-11. doi: 10.1042/BST20130146.
10
Three wise centromere functions: see no error, hear no break, speak no delay.
EMBO Rep. 2013 Dec;14(12):1073-83. doi: 10.1038/embor.2013.181. Epub 2013 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验