Suppr超能文献

我该如何计数?一种运用拉班动作分析量化无脚本动作定性方面的方法。

How Shall I Count the Ways? A Method for Quantifying the Qualitative Aspects of Unscripted Movement With Laban Movement Analysis.

作者信息

Tsachor Rachelle Palnick, Shafir Tal

机构信息

School of Theatre and Music, The University of Illinois at Chicago, Chicago, IL, United States.

The Emili Sagol Creative Arts Therapies Research Center, University of Haifa, Haifa, Israel.

出版信息

Front Psychol. 2019 Mar 28;10:572. doi: 10.3389/fpsyg.2019.00572. eCollection 2019.

Abstract

There is significant clinical evidence showing that creative and expressive movement processes involved in dance/movement therapy (DMT) enhance psycho-social well-being. Yet, because movement is a complex phenomenon, statistically validating which aspects of movement change during interventions or lead to significant positive therapeutic outcomes is challenging because movement has multiple, overlapping variables appearing in unique patterns in different individuals and situations. One factor contributing to the therapeutic effects of DMT is movement's effect on clients' emotional states. Our previous study identified sets of movement variables which, when executed, enhanced specific emotions. In this paper, we describe how we selected movement variables for statistical analysis in that study, using a multi-stage methodology to identify, reduce, code, and quantify the multitude of variables present in unscripted movement. We suggest a set of procedures for using Laban Movement Analysis (LMA)-described movement variables as research data. Our study used LMA, an internationally accepted comprehensive system for movement analysis, and a primary DMT clinical assessment tool for describing movement. We began with Davis's (1970) three-stepped protocol for analyzing movement patterns and identifying the most important variables: (1) We repeatedly observed video samples of validated (Atkinson et al., 2004) emotional expressions to identify prevalent movement variables, eliminating variables appearing minimally or absent. (2) We use the criteria repetition, frequency, duration and emphasis to eliminate additional variables. (3) For each emotion, we analyzed motor expression variations to discover how variables cluster: first, by observing ten movement samples of each emotion to identify variables common to all samples; second, by qualitative analysis of the two best-recognized samples to determine if phrasing, duration or relationship among variables was significant. We added three new steps to this protocol: (4) we created Motifs (LMA symbols) combining movement variables extracted in steps 1-3; (5) we asked participants in the pilot study to move these combinations and quantify their emotional experience. Based on the results of the pilot study, we eliminated more variables; (6) we quantified the remaining variables' prevalence in each Motif for statistical analysis that examined which variables enhanced each emotion. We posit that our method successfully quantified unscripted movement data for statistical analysis.

摘要

有大量临床证据表明,舞蹈/动作疗法(DMT)中涉及的创造性和表达性动作过程可增强心理社会幸福感。然而,由于动作是一种复杂的现象,要从统计学上验证在干预过程中动作的哪些方面发生了变化或导致了显著的积极治疗效果具有挑战性,因为动作具有多个相互重叠的变量,在不同个体和情况下以独特的模式出现。DMT治疗效果的一个促成因素是动作对客户情绪状态的影响。我们之前的研究确定了几组动作变量,当执行这些变量时,会增强特定的情绪。在本文中,我们描述了在该研究中我们如何选择动作变量进行统计分析,使用多阶段方法来识别、减少、编码和量化无脚本动作中存在的大量变量。我们提出了一套将拉班动作分析(LMA)描述的动作变量用作研究数据的程序。我们的研究使用了LMA,这是一个国际认可的用于动作分析的综合系统,也是用于描述动作的主要DMT临床评估工具。我们从戴维斯(1970)分析动作模式和识别最重要变量的三步协议开始:(1)我们反复观察经过验证(阿特金森等人,2004)的情绪表达的视频样本,以识别普遍存在的动作变量,消除出现最少或不存在的变量。(2)我们使用重复、频率、持续时间和重点等标准来消除其他变量。(3)对于每种情绪,我们分析运动表达变化以发现变量如何聚类:首先,通过观察每种情绪的十个动作样本,以识别所有样本共有的变量;其次,通过对两个最易识别的样本进行定性分析,以确定变量之间的措辞、持续时间或关系是否重要。我们在这个协议中增加了三个新步骤:(4)我们创建了结合在步骤1 - 3中提取的动作变量的主题(LMA符号);(5)我们要求试点研究的参与者移动这些组合并量化他们的情绪体验。根据试点研究的结果,我们消除了更多变量;(6)我们量化每个主题中剩余变量的普遍性,以便进行统计分析,研究哪些变量增强了每种情绪。我们认为我们的方法成功地量化了无脚本动作数据以进行统计分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4c3/6455080/cde190b8dd86/fpsyg-10-00572-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验