Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Nat Genet. 2018 Nov;50(11):1501-1504. doi: 10.1038/s41588-018-0243-4. Epub 2018 Oct 8.
Some of the most unique and compelling survival strategies in the natural world are fixed in isolated species. To date, molecular insight into these ancient adaptations has been limited, as classic experimental genetics has focused on interfertile individuals in populations. Here we use a new mapping approach, which screens mutants in a sterile interspecific hybrid, to identify eight housekeeping genes that underlie the growth advantage of Saccharomyces cerevisiae over its distant relative Saccharomyces paradoxus at high temperature. Pro-thermotolerance alleles at these mapped loci were required for the adaptive trait in S. cerevisiae and sufficient for its partial reconstruction in S. paradoxus. The emerging picture is one in which S. cerevisiae improved the heat resistance of multiple components of the fundamental growth machinery in response to selective pressure. Our study lays the groundwork for the mapping of genotype to phenotype in clades of sister species across Eukarya.
自然界中一些最独特和引人注目的生存策略是固定在隔离物种中的。迄今为止,由于经典的实验遗传学侧重于种群中可杂交的个体,因此对这些古老适应机制的分子认识受到了限制。在这里,我们使用一种新的作图方法,该方法筛选不育种间杂种中的突变体,以鉴定出八个与维持细胞基本生长有关的基因,这些基因是酿酒酵母在高温下相对于其远亲酿酒酵母的生长优势的基础。映射位点的耐热等位基因是酿酒酵母适应性状所必需的,并且足以在酿酒酵母中部分重建。出现的情况是,酿酒酵母通过选择性压力提高了基本生长机制的多个组成部分的耐热性。我们的研究为在真核生物的姐妹物种的类群中从基因型到表型的映射奠定了基础。