Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, Montpellier, France.
CNRS, UMR5235, Montpellier, France.
Front Cell Infect Microbiol. 2019 Apr 2;9:84. doi: 10.3389/fcimb.2019.00084. eCollection 2019.
Antivirulence strategies aim to target pathogenicity factors while bypassing the pressure on the bacterium to develop resistance. The MgtC membrane protein has been proposed as an attractive target that is involved in the ability of several major bacterial pathogens, including , to survive inside macrophages. In liquid culture, MgtC acts negatively on biofilm formation. However, a putative link between these two functions of MgtC in has not been experimentally addressed. In the present study, we first investigated the contribution of exopolysaccharides (EPS) in the intramacrophage survival defect and biofilm increase of mutant. Within infected macrophages, expression of EPS genes and was increased in a mutant strain comparatively to wild-type strain. However, the intramacrophage survival defect of mutant was not rescued upon introduction of or mutation, suggesting that MgtC intramacrophage role is unrelated to EPS production, whereas the increased biofilm formation of mutant was partially suppressed by introduction of mutation. We aimed to develop an antivirulence strategy targeting MgtC, by taking advantage of a natural antagonistic peptide, MgtR. Heterologous expression of in PAO1 was shown to reduce its ability to survive within macrophages. We investigated for the first time the biological effect of a synthetic MgtR peptide on . Exogenously added synthetic MgtR peptide lowered the intramacrophage survival of wild-type PAO1, thus mimicking the phenotype of an mutant as well as the effect of endogenously produced MgtR peptide. In correlation with this finding, addition of MgtR peptide to bacterial culture strongly reduced MgtC protein level, without reducing bacterial growth or viability, thus differing from classical antimicrobial peptides. On the other hand, the addition of exogenous MgtR peptide did not affect significantly biofilm formation, indicating an action toward EPS-independent phenotype rather than EPS-related phenotype. Cumulatively, our results show an antivirulence action of synthetic MgtR peptide, which may be more potent against acute infection, and provide a proof of concept for further exploitation of anti- strategies.
抗毒力策略旨在靶向致病性因子,同时绕过细菌产生耐药性的压力。MgtC 膜蛋白已被提议作为一个有吸引力的靶点,该靶点涉及几种主要细菌病原体的能力,包括 ,在巨噬细胞内存活。在液体培养中,MgtC 对生物膜形成起负作用。然而,MgtC 在 中的这两个功能之间的潜在联系尚未在实验中解决。在本研究中,我们首先研究了多糖(EPS)在 突变体的胞内存活缺陷和生物膜增加中的贡献。在感染的巨噬细胞中,与野生型菌株相比,EPS 基因 和 的表达在 突变菌株中增加。然而,在引入 或 突变后, 突变体的胞内存活缺陷并未得到挽救,表明 MgtC 的胞内作用与 EPS 产生无关,而 突变体增加的生物膜形成部分被引入 突变所抑制。我们旨在通过利用天然拮抗肽 MgtR 来开发一种针对 MgtC 的抗毒力策略。在 PAO1 中异源表达 显示其在巨噬细胞内存活的能力降低。我们首次研究了合成 MgtR 肽对 的生物学效应。外源性添加合成的 MgtR 肽降低了野生型 PAO1 的胞内存活率,从而模拟了 突变体的表型以及内源性产生的 MgtR 肽的作用。与此发现相关,向细菌培养物中添加 MgtR 肽强烈降低了 MgtC 蛋白水平,而不降低细菌生长或活力,因此与经典的抗菌肽不同。另一方面,外源性 MgtR 肽的添加对生物膜形成没有显著影响,表明其作用是针对与 EPS 无关的表型而不是与 EPS 相关的表型。总之,我们的结果显示合成 MgtR 肽具有抗毒力作用,这可能对急性感染更有效,并为进一步开发抗 策略提供了概念验证。