Ji Yaqi, Kowalski Piotr M, Kegler Philip, Huittinen Nina, Marks Nigel A, Vinograd Victor L, Arinicheva Yulia, Neumeier Stefan, Bosbach Dirk
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - IEK-6: Nuclear Waste Management and Reactor Safety, Jülich, Germany.
JARA High-Performance Computing, Aachen, Germany.
Front Chem. 2019 Apr 3;7:197. doi: 10.3389/fchem.2019.00197. eCollection 2019.
Lanthanide phosphates ( ) are considered as a potential nuclear waste form for immobilization of Pu and minor actinides (Np, Am, and Cm). In that respect, in the recent years we have applied advanced atomistic simulation methods to investigate various properties of these materials on the atomic scale. In particular, we computed several structural, thermochemical, thermodynamic and radiation damage related parameters. From a theoretical point of view, these materials turn out to be excellent systems for testing quantum mechanics-based computational methods for strongly correlated electronic systems. On the other hand, by conducting joint atomistic modeling and experimental research, we have been able to obtain enhanced understanding of the properties of lanthanide phosphates. Here we discuss joint initiatives directed at understanding the thermodynamically driven long-term performance of these materials, including long-term stability of solid solutions with actinides and studies of structural incorporation of elements into these materials. In particular, we discuss the maximum load of Pu into the lanthanide-phosphate monazites. We also address the importance of our results for applications of lanthanide-phosphates beyond nuclear waste applications, in particular the monazite-xenotime systems in geothermometry. For this we have derived a state-of-the-art model of monazite-xenotime solubilities. Last but not least, we discuss the advantage of usage of atomistic simulations and the modern computational facilities for understanding of behavior of nuclear waste-related materials.
镧系磷酸盐( )被认为是一种潜在的核废料固化形式,用于固定钚和次要锕系元素(镎、镅和锔)。在这方面,近年来我们应用了先进的原子模拟方法来研究这些材料在原子尺度上的各种性质。特别是,我们计算了几个与结构、热化学、热力学和辐射损伤相关的参数。从理论角度来看,这些材料是测试基于量子力学的强关联电子系统计算方法的优秀体系。另一方面,通过联合原子建模和实验研究,我们能够对镧系磷酸盐的性质有更深入的了解。在这里,我们讨论旨在理解这些材料热力学驱动的长期性能的联合倡议,包括含锕系元素固溶体的长期稳定性以及元素在这些材料中的结构掺入研究。特别是,我们讨论了钚在镧系磷酸盐独居石中的最大负载量。我们还阐述了我们的结果对于镧系磷酸盐在核废料应用之外的其他应用的重要性,尤其是在地质测温中的独居石 - 磷钇矿体系。为此,我们推导了一个最新的独居石 - 磷钇矿溶解度模型。最后但同样重要的是,我们讨论了使用原子模拟和现代计算设施来理解核废料相关材料行为的优势。