Juanes Marcos, Saragi Rizalina T, Caminati Walther, Lesarri Alberto
Departamento de Química Física y Química Inorgánica-IU CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, 47011, Valladolid, Spain.
Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
Chemistry. 2019 Sep 2;25(49):11402-11411. doi: 10.1002/chem.201901113. Epub 2019 Jul 8.
In the last decade, experiment and theory have expanded our vision of non-covalent interactions (NCIs), shifting the focus from the conventional hydrogen bond to new bridging interactions involving a variety of weak donor/acceptor partners. Whereas most experimental data originate from condensed phases, the introduction of broadband (chirped-pulse) microwave fast-passage techniques has revolutionized the field of rotational spectroscopy, offering unexplored avenues for high-resolution studies in the gas phase. We present an outlook of hot topics for rotational investigations on isolated intermolecular clusters generated in supersonic jet expansions. Rotational spectra offer very detailed structural data, easily discriminating the isomeric or isotopic composition and effectively cancelling any solvent, crystal, or matrix bias. The direct comparison with quantum mechanical predictions provides insight into the origin of the inter- and intramolecular interactions with much greater precision than any other spectroscopic technique, simultaneously serving as test-bed for fine-tuning of theoretical methods. We present recent examples of rotational investigations around three topics: oligomer formation, chiral recognition, and identification of halogen, chalcogen, pnicogen, or tetrel bonds. The selected examples illustrate the benefits of rotational spectroscopy for the structural and energetic assessment of inter-/intramolecular interactions, which may help to move from fundamental research to applications in supramolecular chemistry and crystal engineering.
在过去十年中,实验和理论拓展了我们对非共价相互作用(NCI)的认识,将关注点从传统氢键转移到涉及各种弱供体/受体对的新型桥连相互作用上。尽管大多数实验数据源自凝聚相,但宽带(啁啾脉冲)微波快速通过技术的引入彻底改变了旋转光谱学领域,为气相中的高分辨率研究开辟了未被探索的途径。我们展示了关于在超声速射流膨胀中产生的孤立分子间簇的旋转研究热点展望。旋转光谱提供了非常详细的结构数据,能够轻松区分异构体或同位素组成,并有效消除任何溶剂、晶体或基质偏差。与量子力学预测的直接比较能比任何其他光谱技术更精确地洞察分子间和分子内相互作用的起源,同时还可作为理论方法微调的试验台。我们展示了围绕三个主题的旋转研究的近期实例:低聚物形成、手性识别以及卤素键、硫族元素键、氮族元素键或碳族元素键的识别。所选实例说明了旋转光谱在分子间/分子内相互作用的结构和能量评估方面的优势,这可能有助于从基础研究转向超分子化学和晶体工程中的应用。