Suppr超能文献

人类诱导多能干细胞中变异数量性状基因座的发现与特征描述。

Discovery and characterization of variance QTLs in human induced pluripotent stem cells.

机构信息

Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America.

Department of Medicine, University of Chicago, Chicago, Illinois, United States of America.

出版信息

PLoS Genet. 2019 Apr 19;15(4):e1008045. doi: 10.1371/journal.pgen.1008045. eCollection 2019 Apr.

Abstract

Quantification of gene expression levels at the single cell level has revealed that gene expression can vary substantially even across a population of homogeneous cells. However, it is currently unclear what genomic features control variation in gene expression levels, and whether common genetic variants may impact gene expression variation. Here, we take a genome-wide approach to identify expression variance quantitative trait loci (vQTLs). To this end, we generated single cell RNA-seq (scRNA-seq) data from induced pluripotent stem cells (iPSCs) derived from 53 Yoruba individuals. We collected data for a median of 95 cells per individual and a total of 5,447 single cells, and identified 235 mean expression QTLs (eQTLs) at 10% FDR, of which 79% replicate in bulk RNA-seq data from the same individuals. We further identified 5 vQTLs at 10% FDR, but demonstrate that these can also be explained as effects on mean expression. Our study suggests that dispersion QTLs (dQTLs) which could alter the variance of expression independently of the mean can have larger fold changes, but explain less phenotypic variance than eQTLs. We estimate 4,015 individuals as a lower bound to achieve 80% power to detect the strongest dQTLs in iPSCs. These results will guide the design of future studies on understanding the genetic control of gene expression variance.

摘要

单细胞水平基因表达水平的定量分析表明,即使在同质细胞群体中,基因表达也会有很大的差异。然而,目前尚不清楚哪些基因组特征控制着基因表达水平的变化,以及常见的遗传变异是否会影响基因表达的变化。在这里,我们采用全基因组的方法来识别表达方差数量性状基因座(vQTLs)。为此,我们从 53 名约鲁巴个体诱导的多能干细胞(iPSCs)中生成了单细胞 RNA-seq(scRNA-seq)数据。我们收集了每个个体中位数为 95 个细胞的数据,总共收集了 5447 个单细胞,并在 FDR 为 10%的情况下确定了 235 个平均表达 QTL(eQTL),其中 79%在来自相同个体的批量 RNA-seq 数据中复制。我们进一步确定了 5 个 FDR 为 10%的 vQTL,但证明这些也可以解释为对平均表达的影响。我们的研究表明,能够独立于平均值改变表达方差的分散 QTL(dQTL)的折叠变化更大,但解释的表型方差比 eQTL 少。我们估计 4015 个人是一个下限,以实现 80%的功率来检测 iPSCs 中最强的 dQTL。这些结果将指导未来研究理解基因表达方差遗传控制的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f7c/6474585/09eaec19a858/pgen.1008045.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验