Suppr超能文献

Catalytic activities of synthetic octadeoxyribonucleotides as coenzymes of poly(ADP-ribose) polymerase and the identification of a new enzyme inhibitory site.

作者信息

Hakam A, McLick J, Buki K, Kun E

出版信息

FEBS Lett. 1987 Feb 9;212(1):73-8. doi: 10.1016/0014-5793(87)81559-4.

Abstract

The catalytic activity of highly purified poly(ADP-ribose) polymerase was determined at constant NAD+ concentration and varying concentrations of sDNA or synthetic octadeoxyribonucleotides of differing composition. The coenzymic activities of deoxyribonucleotides were compared in two ways: graphic presentation of the activation of poly(ADP-ribose) polymerase in the presence of a large concentration range of deoxyribonucleotides and by calculating kD values for the deoxyribonucleotides. As determined by method i, auto-mono-ADP-ribosylation of the enzyme protein at 25 nM NAD+ was maximally activated at 1:1 octamer/enzyme molar ratios by the octadeoxyribonucleotide derived from the regulatory region of SV40 DNA (duplex C). At a 0.4:1 sDNA/enzyme ratio, sDNA was the most active coenzyme for mono-ADP-ribosylation. At 200 microM NAD+, resulting in polymer synthesis and with histones as secondary polymer acceptors, duplex C was the most active coenzyme, and the octamer containing the steroid hormone receptor binding consensus sequence of DNA was a close second, whereas sDNA exhibited an anomalous biphasic kinetics. sDNA was effective on mono-ADP-ribosylation at a concentration 150-200 -times lower than on polymer formation. When comparison of deoxyribonucleotides was based on method ii (kD values), by far the most efficiently binding coenzyme for both mono and polymer synthesis was sDNA, followed by duplex C, with (dA-dT)8 exhibiting the weakest binding. The synthetic molecule 6-amino-1,2-benzopyrone (6-aminocoumarin) competitively inhibited the coenzymic function of synthetic octadeoxyribonucleotides at constant concentration of NAD+, identifying a new inhibitory site of poly(ADP-ribose) polymerase.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验