Suppr超能文献

拟南芥纤维素合酶突变体 Radially Swollen 1 揭示的生长素与细胞壁互作

Auxin and Cell Wall Crosstalk as Revealed by the Arabidopsis thaliana Cellulose Synthase Mutant Radially Swollen 1.

机构信息

Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.

Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, USA.

出版信息

Plant Cell Physiol. 2019 Jul 1;60(7):1487-1503. doi: 10.1093/pcp/pcz055.

Abstract

Plant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.

摘要

植物细胞被一层复杂的多糖、蛋白质和酶晶格所包裹,形成一个被称为细胞壁的完整基质。细胞壁的主要成分纤维素微纤丝是由纤维素合成酶 A(CESA)蛋白在细胞质膜上合成的,这些蛋白在细胞生长过程中不断合成,并负责膨压驱动的各向异性扩张。激素信号与细胞壁生物合成之间的关联早已被提出,但最近发现了直接的联系,揭示了激素在纤维素生物合成中发挥着关键的调节作用。拟南芥 CESA1 的径向肿胀 1(rsw1)等位基因仅发生了一个氨基酸的改变,使该蛋白在高温下不稳定。我们利用 rsw1 的条件性,研究了生长素如何促进各向同性生长。我们发现,在限制温度 30°C 下,外源生长素处理可减少 rsw1 根的各向同性肿胀。我们还通过共聚焦成像 AUX1-YFP 发现,即使在允许温度 19°C 下,rsw1 和野生型根之间的生长素流入也会减少。此外,rsw1 表现出生长素响应基因和 CESA 基因的错误表达。此外,我们发现使用 DII-VENUS 和 DR5:vYFP 生长素报告基因,在 rsw1 突变体根开始肿胀时,生长素最大值发生改变。总的来说,我们得出结论,细胞壁生物合成的破坏会干扰生长素的运输,导致生长素稳态的改变,从而影响到各向异性和各向同性生长,最终影响整个根的形态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验