Suppr超能文献

一种基于剪枝搭配的多组态含时 Hartree 方法,使用 Smolyak 网格求解具有一般势能面的薛定谔方程。

A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface.

作者信息

Wodraszka Robert, Carrington Tucker

机构信息

Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada.

出版信息

J Chem Phys. 2019 Apr 21;150(15):154108. doi: 10.1063/1.5093317.

Abstract

Standard multiconfiguration time-dependent Hartree (MCTDH) calculations use a direct product basis and rely on the potential being a sum of products (SOPs). The size of the direct product MCTDH basis scales exponentially with the number of atoms. Accurate potentials may not be SOPs. We introduce an MCTDH approach that uses a pruned basis and a collocation grid. Pruning the basis significantly reduces its size. Collocation makes it possible to do calculations using a potential that is not a SOP. The collocation point set is a Smolyak grid. Strategies using pruned MCTDH bases already exist, but they work only if the potential is a SOP. Strategies for using MCTDH with collocation also exist, but they work only if the MCTDH basis is a direct product. In this paper, we combine a pruned basis with collocation. This makes it possible to mitigate the direct-product basis size problem and do calculations when the potential is not a SOP. Because collocation is used, there are no integrals and no need for quadrature. All required matrix-vector products can be evaluated sequentially. We use nested sets of collocation points and hierarchical basis functions. They permit efficient inversion of the (large) matrix whose elements are basis functions evaluated at points, which is necessary to transform values of functions at points to basis coefficients. The inversion technique could be used outside of chemical physics. We confirm the validity of this new pruned, collocation-based (PC-)MCTDH approach by calculating the first 50 vibrational eigenenergies of CHNH.

摘要

标准的多组态含时 Hartree(MCTDH)计算使用直积基,并依赖于势能为乘积之和(SOPs)。直积 MCTDH 基的大小随原子数呈指数增长。精确的势能可能不是 SOPs。我们引入一种使用精简基和配置网格的 MCTDH 方法。精简基显著减小了其大小。配置使得使用不是 SOP 的势能进行计算成为可能。配置点集是一个 Smolyak 网格。使用精简 MCTDH 基的策略已经存在,但仅当势能是 SOP 时才有效。使用配置的 MCTDH 策略也存在,但仅当 MCTDH 基是直积时才有效。在本文中,我们将精简基与配置相结合。这使得缓解直积基大小问题并在势能不是 SOP 时进行计算成为可能。因为使用了配置,所以没有积分且无需求积。所有所需的矩阵 - 向量乘积都可以顺序计算。我们使用嵌套的配置点集和分层基函数。它们允许有效地求逆其元素为在各点处求值的基函数的(大)矩阵,这对于将函数在各点处的值转换为基系数是必要的。这种求逆技术可以在化学物理领域之外使用。我们通过计算 CHNH 的前 50 个振动本征能量来确认这种基于配置的新精简(PC -)MCTDH 方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验