Suppr超能文献

利用物理知识引导的程序合成探索分子振动光谱的新算法。

Exploring New Algorithms for Molecular Vibrational Spectroscopy Using Physics-Informed Program Synthesis.

作者信息

Acheson Kyle, Habershon Scott

机构信息

Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.

出版信息

J Chem Theory Comput. 2025 Jan 14;21(1):307-320. doi: 10.1021/acs.jctc.4c01312. Epub 2024 Dec 18.

Abstract

Inductive program synthesis (PS) has recently begun to emerge as a useful new approach to automatically generate algorithms in quantum chemistry, as demonstrated in recent applications to the vibrational Schrödinger equation for simple model systems with one or two degrees-of-freedom. Here, we report a new physics-informed approach to inductive PS that is more conducive to the generation of discrete variable representation algorithms for real molecular systems. The new framework ensures separability of the kinetic and potential operators and does not require an exact solution to compare synthesized algorithmic predictions with. Algorithms with a tridiagonal matrix structure are generated via a variational-based stochastic optimization procedure. Crucially, through an extensive testing procedure, we demonstrate that variationally synthesized algorithms perform just as well as those generated using a target function. Assuming a direct product representation of normal coordinates, these algorithms are applied to three triatomic molecules. In total, we identify a set of seven PS algorithms that accurately reproduce the vibrational spectra of HO, NO, and SO, as predicted by Colbert-Miller and sine-DVR algorithms.

摘要

归纳程序合成(PS)最近已开始成为一种有用的新方法,用于在量子化学中自动生成算法,这在最近应用于具有一个或两个自由度的简单模型系统的振动薛定谔方程中得到了证明。在此,我们报告了一种新的基于物理知识的归纳PS方法,该方法更有利于为实际分子系统生成离散变量表示算法。新框架确保了动能算符和势能算符的可分离性,并且不需要精确解来将合成的算法预测与之进行比较。具有三对角矩阵结构的算法是通过基于变分的随机优化过程生成的。至关重要的是,通过广泛的测试过程,我们证明了变分合成的算法与使用目标函数生成的算法表现一样好。假设法向坐标的直积表示,这些算法被应用于三个三原子分子。总共,我们确定了一组七种PS算法,它们能够准确再现由科尔伯特 - 米勒算法和正弦离散变量表示(sine - DVR)算法预测的HO、NO和SO的振动光谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ecd/11736792/7a4eecced00c/ct4c01312_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验