Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
Chemical Physics Program, Institute for Physical Science and Technology.
Biophys J. 2019 May 21;116(10):1845-1855. doi: 10.1016/j.bpj.2019.03.021. Epub 2019 Apr 17.
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4) tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
在真核生物中,DNA 被包装在核小体中。每个核小体的 DNA 通常围绕着八聚体组蛋白核心:一个中央四聚体加两个单独的二聚体。研究组蛋白的组装机制对于理解整个核小体和更高阶 DNA 包装的动力学至关重要。在这里,我们使用分子动力学模拟研究了典型组蛋白的组装和着丝粒特异性组蛋白变体 CENP-A 的组装。我们定量地描述了它们的热力学和动力学特征,表明两个 H3/H4 二聚体形成了一个结构上柔软、弱结合的复合物,后者在中央界面周围表现出很大的不稳定性,通过两个半体的旋转运动来实现。这一发现与最近观察到的四聚体 DNA 手性翻转一致。相比之下,变体 CENP-A 与其四聚体的编码具有独特的稳定性,与晶体结构相比,其界面具有刚性但扭曲的结构,这意味着组蛋白变体具有不同的结构可能性。有趣的是,当存在 H2A/H2B 二聚体时,观察到的四聚体动力学发生了显著变化,并似乎达到了新的平衡。此外,我们发现(CENP-A/H4)四聚体的首选结构与八聚体结构不一致,这解释了 CENP-A 核小体许多异常的动力学行为。总之,这些数据揭示了典型和变体组蛋白四聚体和八聚体组装的关键机制见解和结构细节,为长期存在的和最近的实验观察提供了理论量化和物理解释。基于这些发现,我们提出了不同的伴侣蛋白辅助结合和核小体组装机制,用于典型和 CENP-A 组蛋白寡聚体。