Suppr超能文献

着丝粒的结构与功能

Centromere Structure and Function.

作者信息

Bloom Kerry, Costanzo Vincenzo

机构信息

Department of Biology, University of North Carolina at Chapel Hill, 623 Fordham Hall CB#3280, Chapel Hill, NC, 27599-3280, USA.

DNA Metabolism Laboratory, IFOM, The FIRC Institute of Molecular Oncology, Vai Adamello 16, 21139, Milan, Italy.

出版信息

Prog Mol Subcell Biol. 2017;56:515-539. doi: 10.1007/978-3-319-58592-5_21.

Abstract

The centromere is the genetic locus that specifies the site of kinetochore assembly, where the chromosome will attach to the kinetochore microtubule. The pericentromere is the physical region responsible for the geometry of bi-oriented sister kinetochores in metaphase. In budding yeast the 125 bp point centromere is sufficient to specify kinetochore assembly. The flanking region is enriched (3X) in cohesin and condensin relative to the remaining chromosome arms. The enrichment spans about 30-50 kb around each centromere. We refer to the flanking chromatin as the pericentromere in yeast. In mammals, a 5-10 Mb region dictates where the kinetochore is built. The kinetochore interacts with a very small fraction of DNA on the surface of the centromeric region. The remainder of the centromere lies between the sister kinetochores. This is typically called centromere chromatin. The chromatin sites that directly interface to microtubules cannot be identified due to the repeated sequence within the mammalian centromere. However in both yeast and mammals, the total amount of DNA between the sites of microtubule attachment in metaphase is highly conserved. In yeast the 16 chromosomes are clustered into a 250 nm diameter region, and 800 kb (16 × 50 kb) or ~1 Mb of DNA lies between sister kinetochores. In mammals, 5-10 Mb lies between sister kinetochores. In both organisms the sister kinetochores are separated by about 1 μm. Thus, centromeres of different organisms differ in how they specify kinetochore assembly, but there may be important centromere chromatin functions that are conserved throughout phylogeny. Recently, centromeric chromatin has been reconstituted in vitro using alpha satellite DNA revealing unexpected features of centromeric DNA organization, replication, and response to stress. We will focus on the conserved features of centromere in this review.

摘要

着丝粒是指定动粒组装位点的基因座,染色体将在此处附着于动粒微管。着丝粒周围区域是负责中期双定向姐妹动粒几何形状的物理区域。在芽殖酵母中,125 bp的点着丝粒足以指定动粒组装。相对于其余染色体臂,侧翼区域的黏连蛋白和凝聚素富集(3倍)。这种富集在每个着丝粒周围延伸约30 - 50 kb。我们将酵母中的侧翼染色质称为着丝粒周围区域。在哺乳动物中,一个5 - 10 Mb的区域决定了动粒的构建位置。动粒与着丝粒区域表面的一小部分DNA相互作用。着丝粒的其余部分位于姐妹动粒之间。这通常被称为着丝粒染色质。由于哺乳动物着丝粒内的重复序列,无法确定直接与微管接触的染色质位点。然而,在酵母和哺乳动物中,中期微管附着位点之间的DNA总量高度保守。在酵母中,16条染色体聚集在一个直径250 nm的区域内,姐妹动粒之间有800 kb(16×50 kb)或约1 Mb的DNA。在哺乳动物中,姐妹动粒之间有5 - 10 Mb。在这两种生物中,姐妹动粒之间的距离约为1μm。因此,不同生物体的着丝粒在指定动粒组装的方式上有所不同,但可能存在贯穿系统发育过程保守的重要着丝粒染色质功能。最近,使用α卫星DNA在体外重建了着丝粒染色质,揭示了着丝粒DNA组织、复制和应激反应的意外特征。在本综述中,我们将重点关注着丝粒的保守特征。

相似文献

1
Centromere Structure and Function.着丝粒的结构与功能
Prog Mol Subcell Biol. 2017;56:515-539. doi: 10.1007/978-3-319-58592-5_21.
2
The kinetochore is an enhancer of pericentric cohesin binding.动粒是着丝粒周围黏连蛋白结合的增强子。
PLoS Biol. 2004 Sep;2(9):E260. doi: 10.1371/journal.pbio.0020260. Epub 2004 Jul 27.
3
The regulation of chromosome segregation via centromere loops.通过着丝粒环来调节染色体分离。
Crit Rev Biochem Mol Biol. 2019 Aug;54(4):352-370. doi: 10.1080/10409238.2019.1670130. Epub 2019 Oct 1.
5
Centromeric heterochromatin: the primordial segregation machine.着丝粒异染色质:原始的分离机器。
Annu Rev Genet. 2014;48:457-84. doi: 10.1146/annurev-genet-120213-092033. Epub 2014 Sep 18.
9
Shaping centromeres to resist mitotic spindle forces.塑造着丝纺锤体的力来抵抗着着丝粒。
J Cell Sci. 2022 Feb 15;135(4). doi: 10.1242/jcs.259532. Epub 2022 Feb 18.

引用本文的文献

3
The centromere bottlebrush requires a multi-microtubule attachment.着丝粒刷需要多微管附着。
Mol Biol Cell. 2025 Jun 1;36(6):ar70. doi: 10.1091/mbc.E25-02-0050. Epub 2025 Apr 23.
7
Splitting the yeast centromere by recombination.通过重组拆分酵母着丝粒。
Nucleic Acids Res. 2024 Jan 25;52(2):690-707. doi: 10.1093/nar/gkad1110.

本文引用的文献

3
Entropy gives rise to topologically associating domains.熵产生拓扑关联结构域。
Nucleic Acids Res. 2016 Jul 8;44(12):5540-9. doi: 10.1093/nar/gkw510. Epub 2016 Jun 2.
5
Chromosome Compaction by Active Loop Extrusion.通过主动环挤压实现染色体压缩
Biophys J. 2016 May 24;110(10):2162-8. doi: 10.1016/j.bpj.2016.02.041.
6
Formation of Chromosomal Domains by Loop Extrusion.通过环状挤压形成染色体结构域
Cell Rep. 2016 May 31;15(9):2038-49. doi: 10.1016/j.celrep.2016.04.085. Epub 2016 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验