Falany C N, Green M D, Tephly T R
J Biol Chem. 1987 Jan 25;262(3):1218-22.
A kinetic analysis of two homogeneous rat liver steroid (3 alpha-hydroxysteroid and 17 beta-hydroxysteroid) UDP-glucuronosyltransferases was conducted using bisubstrate kinetic analysis, product inhibition studies, and dead-end competitive inhibition studies. Double reciprocal plots of initial velocity versus substrate concentration, using bisubstrate kinetic analysis, gave a sequential mechanism. Product inhibition studies were compatible with either a rapid equilibrium, random-order kinetic mechanism or an ordered Theorell-Chance mechanism. Results of dead-end competitive inhibition studies excluded an ordered Theorell-Chance mechanism. The cumulative results are consistent with a rapid equilibrium random-order sequential kinetic mechanism for the glucuronidation of testosterone by purified 17 beta-hydroxysteroid UDP-glucuronosyltransferase and of androsterone by purified 3 alpha-hydroxysteroid UDP-glucuronosyltransferase.