Suppr超能文献

TAF5L 和 TAF6L 通过 MYC 调控网络维持胚胎干细胞自我更新。

TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network.

机构信息

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.

Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia.

出版信息

Mol Cell. 2019 Jun 20;74(6):1148-1163.e7. doi: 10.1016/j.molcel.2019.03.025. Epub 2019 Apr 17.

Abstract

Self-renewal and pluripotency of the embryonic stem cell (ESC) state are established and maintained by multiple regulatory networks that comprise transcription factors and epigenetic regulators. While much has been learned regarding transcription factors, the function of epigenetic regulators in these networks is less well defined. We conducted a CRISPR-Cas9-mediated loss-of-function genetic screen that identified two epigenetic regulators, TAF5L and TAF6L, components or co-activators of the GNAT-HAT complexes for the mouse ESC (mESC) state. Detailed molecular studies demonstrate that TAF5L/TAF6L transcriptionally activate c-Myc and Oct4 and their corresponding MYC and CORE regulatory networks. Besides, TAF5L/TAF6L predominantly regulate their target genes through H3K9ac deposition and c-MYC recruitment that eventually activate the MYC regulatory network for self-renewal of mESCs. Thus, our findings uncover a role of TAF5L/TAF6L in directing the MYC regulatory network that orchestrates gene expression programs to control self-renewal for the maintenance of mESC state.

摘要

胚胎干细胞 (ESC) 状态的自我更新和多能性是由多个调节网络建立和维持的,这些调节网络包括转录因子和表观遗传调节剂。虽然已经了解了很多关于转录因子的知识,但这些网络中表观遗传调节剂的功能还不太明确。我们进行了 CRISPR-Cas9 介导的功能丧失遗传筛选,鉴定出两个表观遗传调节剂,TAF5L 和 TAF6L,它们是用于小鼠 ESC(mESC)状态的 GNAT-HAT 复合物的组成部分或共激活因子。详细的分子研究表明,TAF5L/TAF6L 转录激活 c-Myc 和 Oct4 及其相应的 MYC 和 CORE 调节网络。此外,TAF5L/TAF6L 主要通过 H3K9ac 沉积和 c-MYC 募集来调节其靶基因,最终激活 MYC 调节网络,以维持 mESC 的自我更新。因此,我们的发现揭示了 TAF5L/TAF6L 在指导 MYC 调节网络中的作用,该网络协调基因表达程序,以控制自我更新,维持 mESC 状态。

相似文献

1
TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network.
Mol Cell. 2019 Jun 20;74(6):1148-1163.e7. doi: 10.1016/j.molcel.2019.03.025. Epub 2019 Apr 17.
3
myc maintains embryonic stem cell pluripotency and self-renewal.
Differentiation. 2010 Jul;80(1):9-19. doi: 10.1016/j.diff.2010.05.001. Epub 2010 May 27.
4
Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells.
PLoS One. 2008;3(12):e3932. doi: 10.1371/journal.pone.0003932. Epub 2008 Dec 11.
5
TAF4b and TAF4 differentially regulate mouse embryonic stem cells maintenance and proliferation.
Genes Cells. 2013 Mar;18(3):225-37. doi: 10.1111/gtc.12030. Epub 2013 Jan 27.
6
The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines.
Biochim Biophys Acta. 2011 Feb;1810(2):226-35. doi: 10.1016/j.bbagen.2010.10.004. Epub 2010 Oct 20.
7
NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming.
Nat Cell Biol. 2018 Apr;20(4):400-412. doi: 10.1038/s41556-018-0047-x. Epub 2018 Mar 12.
9
A central role for TFIID in the pluripotent transcription circuitry.
Nature. 2013 Mar 28;495(7442):516-9. doi: 10.1038/nature11970. Epub 2013 Mar 17.
10
Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog.
Biochem Biophys Res Commun. 2013 Feb 15;431(3):444-9. doi: 10.1016/j.bbrc.2012.12.149. Epub 2013 Jan 16.

引用本文的文献

2
ARID4B: An Orchestrator from Stem Cell Fate to Carcinogenesis.
Cells. 2025 Jun 10;14(12):872. doi: 10.3390/cells14120872.
4
Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates.
Nat Struct Mol Biol. 2025 Mar;32(3):520-530. doi: 10.1038/s41594-024-01457-6. Epub 2025 Jan 15.
5
7
The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming.
Sci Adv. 2024 Aug 9;10(32):eadj8862. doi: 10.1126/sciadv.adj8862. Epub 2024 Aug 7.
8
Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges.
Stem Cell Res Ther. 2024 Jul 19;15(1):218. doi: 10.1186/s13287-024-03831-z.
9
Combined lineage tracing and scRNA-seq reveal the activation of Sox9 cells in renal regeneration with PGE treatment.
Cell Prolif. 2024 Nov;57(11):e13679. doi: 10.1111/cpr.13679. Epub 2024 May 27.

本文引用的文献

1
Salmon provides fast and bias-aware quantification of transcript expression.
Nat Methods. 2017 Apr;14(4):417-419. doi: 10.1038/nmeth.4197. Epub 2017 Mar 6.
3
Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells.
Front Cell Dev Biol. 2017 Feb 3;5:7. doi: 10.3389/fcell.2017.00007. eCollection 2017.
4
Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State.
Cell Stem Cell. 2016 Oct 6;19(4):476-490. doi: 10.1016/j.stem.2016.08.008. Epub 2016 Sep 8.
6
deepTools2: a next generation web server for deep-sequencing data analysis.
Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5. doi: 10.1093/nar/gkw257. Epub 2016 Apr 13.
7
Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause.
Cell. 2016 Feb 11;164(4):668-80. doi: 10.1016/j.cell.2015.12.033.
9
Creating reference gene annotation for the mouse C57BL6/J genome assembly.
Mamm Genome. 2015 Oct;26(9-10):366-78. doi: 10.1007/s00335-015-9583-x. Epub 2015 Jul 18.
10
Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.
Kidney Int. 2015 Aug;88(2):286-98. doi: 10.1038/ki.2015.121. Epub 2015 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验