Suppr超能文献

一个耦合的反应-扩散-应变模型预测了颅穹窿在发育和疾病中的形成。

A coupled reaction-diffusion-strain model predicts cranial vault formation in development and disease.

机构信息

Department of Mechanical Engineering, Pennsylvania State University, 341 Leonhard Building, University Park, PA, 16802, USA.

Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA, 16802, USA.

出版信息

Biomech Model Mechanobiol. 2019 Aug;18(4):1197-1211. doi: 10.1007/s10237-019-01139-z. Epub 2019 Apr 20.

Abstract

How cells utilize instructions provided by genes and integrate mechanical forces generated by tissue growth to produce morphology is a fundamental question of biology. Dermal bones of the vertebrate cranial vault are formed through the direct differentiation of mesenchymal cells on the neural surface into osteoblasts through intramembranous ossification. Here we join a self-organizing Turing mechanism, computational biomechanics, and experimental data to produce a 3D representative model of the growing cerebral surface, cranial vault bones, and sutures. We show how changes in single parameters regulating signaling during osteoblast differentiation and bone formation may explain cranial vault shape variation in craniofacial disorders. A key result is that toggling a parameter in our model results in closure of a cranial vault suture, an event that occurred during evolution of the cranial vault and that occurs in craniofacial disorders. Our approach provides an initial and important step toward integrating biomechanics into the genotype phenotype map to explain the production of variation in head morphology by developmental mechanisms.

摘要

细胞如何利用基因提供的指令,并整合组织生长产生的机械力来产生形态,这是生物学的一个基本问题。脊椎动物颅顶的真皮骨是通过间质细胞在神经表面通过膜内成骨直接分化为成骨细胞形成的。在这里,我们将自组织图灵机制、计算生物力学和实验数据结合起来,生成一个不断生长的大脑表面、颅顶骨和缝合线的 3D 代表性模型。我们展示了调节成骨细胞分化和骨形成过程中信号的单个参数的变化如何解释颅面畸形中颅顶形状的变异。一个关键的结果是,在我们的模型中切换一个参数会导致颅顶缝合线的闭合,这一事件发生在颅顶的进化过程中,也发生在颅面畸形中。我们的方法为将生物力学纳入基因型表型图谱提供了一个初始且重要的步骤,以解释发育机制对头骨形态变异的产生。

相似文献

1
A coupled reaction-diffusion-strain model predicts cranial vault formation in development and disease.
Biomech Model Mechanobiol. 2019 Aug;18(4):1197-1211. doi: 10.1007/s10237-019-01139-z. Epub 2019 Apr 20.
2
A COMPUTATIONAL ANALYSIS OF BONE FORMATION IN THE CRANIAL VAULT USING A COUPLED REACTION-DIFFUSION-STRAIN MODEL.
J Mech Med Biol. 2017 Jun;17(4). doi: 10.1142/S0219519417500737. Epub 2017 May 29.
3
4
Flat bones and sutures formation in the human cranial vault during prenatal development and infancy: A computational model.
J Theor Biol. 2016 Mar 21;393:127-44. doi: 10.1016/j.jtbi.2016.01.006. Epub 2016 Jan 15.
6
A computational analysis of bone formation in the cranial vault in the mouse.
Front Bioeng Biotechnol. 2015 Mar 19;3:24. doi: 10.3389/fbioe.2015.00024. eCollection 2015.
7
The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis.
Curr Top Dev Biol. 2015;115:131-56. doi: 10.1016/bs.ctdb.2015.07.004. Epub 2015 Oct 1.
8
Cranial sutures as intramembranous bone growth sites.
Dev Dyn. 2000 Dec;219(4):472-85. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1073>3.0.CO;2-F.
9
Cranial suture biology: from pathways to patient care.
J Craniofac Surg. 2012 Jan;23(1):13-9. doi: 10.1097/SCS.0b013e318240c6c0.
10
Cranial deformation in craniosynostosis. A new explanation.
Neurosurg Clin N Am. 1991 Jul;2(3):611-20.

引用本文的文献

1
2
Skeletal-Vascular Interactions in Bone Development, Homeostasis, and Pathological Destruction.
Int J Mol Sci. 2023 Jun 30;24(13):10912. doi: 10.3390/ijms241310912.
3
From mesenchymal niches to engineered model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling.
Mater Today Bio. 2022 Nov 22;17:100502. doi: 10.1016/j.mtbio.2022.100502. eCollection 2022 Dec 15.
5
The developing mouse coronal suture at single-cell resolution.
Nat Commun. 2021 Aug 10;12(1):4797. doi: 10.1038/s41467-021-24917-9.
6
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis.
Genes (Basel). 2021 Jul 14;12(7):1073. doi: 10.3390/genes12071073.
7
Ontogenetic and in silico models of spatial-packing in the hypermuscular mouse skull.
J Anat. 2021 Jun;238(6):1284-1295. doi: 10.1111/joa.13393. Epub 2021 Jan 13.
8
Making and shaping endochondral and intramembranous bones.
Dev Dyn. 2021 Mar;250(3):414-449. doi: 10.1002/dvdy.278. Epub 2020 Dec 28.

本文引用的文献

1
Cell Mechanics of Craniosynostosis.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2733-2743. doi: 10.1021/acsbiomaterials.6b00557. Epub 2016 Dec 14.
2
Nonsyndromic craniosynostosis: novel coding variants.
Pediatr Res. 2019 Mar;85(4):463-468. doi: 10.1038/s41390-019-0274-2. Epub 2019 Jan 14.
3
A COMPUTATIONAL ANALYSIS OF BONE FORMATION IN THE CRANIAL VAULT USING A COUPLED REACTION-DIFFUSION-STRAIN MODEL.
J Mech Med Biol. 2017 Jun;17(4). doi: 10.1142/S0219519417500737. Epub 2017 May 29.
4
Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes.
Front Hum Neurosci. 2017 Jul 25;11:369. doi: 10.3389/fnhum.2017.00369. eCollection 2017.
5
Dimensional, Geometrical, and Physical Constraints in Skull Growth.
Phys Rev Lett. 2017 Jun 16;118(24):248101. doi: 10.1103/PhysRevLett.118.248101.
6
Mouse models of human disease: An evolutionary perspective.
Evol Med Public Health. 2016 May 21;2016(1):170-6. doi: 10.1093/emph/eow014. Print 2016.
8
Understanding craniosynostosis as a growth disorder.
Wiley Interdiscip Rev Dev Biol. 2016 Jul;5(4):429-59. doi: 10.1002/wdev.227. Epub 2016 Mar 22.
9
Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'.
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666). doi: 10.1098/rstb.2014.0218.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验