Ayala Mario, Carinci Gioia, Redig Frank
Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
J Stat Phys. 2018;171(6):980-999. doi: 10.1007/s10955-018-2060-7. Epub 2018 May 10.
We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the particle dynamics.
我们在具有对偶性的粒子系统背景下研究正交多项式的涨落场。由此,我们得到了局部函数涨落场的系统正交分解,其中每一项的阶数都可以量化。这意味着玻尔兹曼 - 吉布斯原理的定量推广。在独立随机游走者的背景下,我们完成了这个程序,其中也包括非平稳背景(局部平衡)下的涨落场。对于其他具有对偶性的相互作用粒子系统,如对称排斥过程,在关于粒子动力学的精确条件下,可以得到类似的结果。