Redig Frank, Sau Federico
Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
J Stat Phys. 2018;172(4):980-1008. doi: 10.1007/s10955-018-2090-1. Epub 2018 Jun 22.
We find all self-duality functions of the form for a class of interacting particle systems. We call these duality functions of simple factorized form. The functions we recover are self-duality functions for interacting particle systems such as zero-range processes, symmetric inclusion and exclusion processes, as well as duality and self-duality functions for their continuous counterparts. The approach is based on, firstly, a general relation between factorized duality functions and stationary product measures and, secondly, an intertwining relation provided by generating functions. For the interacting particle systems, these self-duality and duality functions turn out to be generalizations of those previously obtained in Giardinà et al. (J Stat Phys 135:25-55, 2009) and, more recently, in Franceschini and Giardinà (Preprint, arXiv:1701.09115, 2016) . Thus, we discover that only these two families of dualities cover all possible cases. Moreover, the same method discloses all simple factorized self-duality functions for interacting diffusion systems such as the Brownian energy process, where both the process and its dual are in continuous variables.
对于一类相互作用粒子系统,我们找到了所有形如 的自对偶函数。我们称这些为简单因式分解形式的对偶函数。我们恢复的函数是相互作用粒子系统的自对偶函数,例如零程过程、对称包含与排除过程,以及它们连续对应物的对偶和自对偶函数。该方法首先基于因式分解对偶函数与平稳乘积测度之间的一般关系,其次基于生成函数提供的交织关系。对于相互作用粒子系统,这些自对偶和对偶函数结果是先前在贾尔迪纳等人(《统计物理杂志》135:25 - 55,2009年)以及最近在弗朗切斯基尼和贾尔迪纳(预印本,arXiv:1701.09115,2016年)中所得到的那些函数的推广。因此,我们发现只有这两类对偶涵盖了所有可能的情况。此外,相同的方法揭示了相互作用扩散系统(如布朗能量过程)的所有简单因式分解自对偶函数,其中该过程及其对偶均为连续变量。