Moore Sam, Mörters Peter, Rogers Tim
1University of Bath, Claverton Down, Bath, BA2 7AY UK.
2Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany.
J Stat Phys. 2018;171(6):1122-1135. doi: 10.1007/s10955-018-2050-9. Epub 2018 Apr 26.
We study the dynamics of secondary infections on networks, in which only the individuals currently carrying a certain primary infection are susceptible to the secondary infection. In the limit of large sparse networks, the model is mapped to a branching process spreading in a random time-sensitive environment, determined by the dynamics of the underlying primary infection. When both epidemics follow the Susceptible-Infective-Recovered model, we show that in order to survive, it is necessary for the secondary infection to evolve on a timescale that is closely matched to that of the primary infection on which it depends.
我们研究网络上二次感染的动态过程,其中只有当前携带某种原发性感染的个体才易受二次感染。在大型稀疏网络的极限情况下,该模型被映射到一个在随机时间敏感环境中传播的分支过程,该环境由潜在原发性感染的动态过程决定。当两种流行病都遵循易感-感染-康复模型时,我们表明,为了持续存在,二次感染必须在与它所依赖的原发性感染紧密匹配的时间尺度上演变。