Suppr超能文献

具有度-权重相关性的配分网络中小节点的重要性。

Importance of small-degree nodes in assortative networks with degree-weight correlations.

机构信息

Department of Physics, National University of Singapore, Singapore 117551.

Complex Systems Group, Institute of High Performance Computing, A*STAR, Singapore 138632.

出版信息

Phys Rev E. 2017 Oct;96(4-1):042308. doi: 10.1103/PhysRevE.96.042308. Epub 2017 Oct 20.

Abstract

It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.

摘要

已知,网络的节点连接结构对无权重网络的传播动力学起着重要作用。然而,当权重与节点的度数强烈相关时,比如我们在 Twitter 上观察到的情况,其对权重网络的影响还不清楚。在这里,我们使用自洽概率方法和修正的非微扰异质平均场理论方法来研究其对易感染-感染-恢复(SIR)和易感染-感染-易感染(SIS)传播动力学的影响。我们的模拟和理论结果都表明,尽管关联度不会显著影响临界阈值,但在不同的度-权重相关性下,超临界状态的流行率会出现交叉。特别是,与随机混合网络不同,在关联网络中,负度-权重相关性会导致在传播超过临界传播率时,其流行率高于正相关性的情况。此外,以前观察到的关联结构对传播速度的抑制作用在负度-权重相关性网络中并不明显,而在正相关性网络中则会增强。对感染节点的度分布的详细研究表明,小度数节点在 SIR 和 SIS 传播的超临界阶段起着至关重要的作用。我们的研究结果对理解在线社交网络中的病毒信息传播和接触网络中的传染病传播具有直接意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验