Suppr超能文献

试剂控制的α-(1,3)-葡聚糖的立体选择性组装

Reagent Controlled Stereoselective Assembly of α-(1,3)-Glucans.

作者信息

Wang Liming, Overkleeft Herman S, van der Marel Gijsbert A, Codée Jeroen D C

机构信息

Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands.

出版信息

European J Org Chem. 2019 Mar 14;2019(10):1994-2003. doi: 10.1002/ejoc.201800894. Epub 2018 Oct 4.

Abstract

Pre-activation based glycosylations have become a very powerful tool in the assembly of oligosaccharides and the use of nucleophilic additives allows for the in situ generation of reactive intermediates with tailored reactivity. We here use a glycosylation strategy that is based on the use of per-benzylated imidate building blocks for the fully stereoselective construction of a spacer equipped α-1,3-octaglucan. We have used the trimethylsilyl iodide (TMSI)-triphenylphosphine oxide (PhP=O) for the stereoselective installation of an azidopropanol spacer and triflic acid (TfOH)-dimethyl formamide (DMF) enabled glycosylations for the coupling reactions with the secondary glucosyl C-3-alcohols. An operationally simple in situ activation coupling procedure is introduced and used for the final glycosylation events towards the octasaccharide.

摘要

基于预活化的糖基化反应已成为寡糖组装中一种非常强大的工具,亲核添加剂的使用使得能够原位生成具有定制反应性的反应中间体。我们在此使用一种糖基化策略,该策略基于使用全苄基化亚氨酸酯构建块来完全立体选择性地构建带有间隔基的α-1,3-八葡聚糖。我们使用三甲基硅基碘(TMSI)-三苯基氧化膦(PhP=O)进行叠氮丙醇间隔基的立体选择性安装,并使用三氟甲磺酸(TfOH)-二甲基甲酰胺(DMF)实现与二级葡萄糖基C-3-醇的偶联反应的糖基化。引入了一种操作简单的原位活化偶联程序,并将其用于八糖的最终糖基化反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19e9/6470887/cca898cdf401/EJOC-2019-1994-g001.jpg

相似文献

1
Reagent Controlled Stereoselective Assembly of α-(1,3)-Glucans.
European J Org Chem. 2019 Mar 14;2019(10):1994-2003. doi: 10.1002/ejoc.201800894. Epub 2018 Oct 4.
2
Reagent Controlled Stereoselective Synthesis of α-Glucans.
J Am Chem Soc. 2018 Apr 4;140(13):4632-4638. doi: 10.1021/jacs.8b00669. Epub 2018 Mar 23.
3
Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.
Acc Chem Res. 2016 Jan 19;49(1):35-47. doi: 10.1021/acs.accounts.5b00357. Epub 2015 Nov 2.
5
Reagent controlled stereoselective synthesis of teichoic acid α-(1,2)-glucans.
Org Biomol Chem. 2020 Mar 18;18(11):2038-2050. doi: 10.1039/d0ob00240b.
6
Phenanthroline Catalysis in Stereoselective 1,2- Glycosylations.
Acc Chem Res. 2022 Dec 20;55(24):3738-3751. doi: 10.1021/acs.accounts.2c00636. Epub 2022 Nov 30.
7
Reagent Controlled Glycosylations for the Assembly of Well-Defined Pel Oligosaccharides.
J Org Chem. 2020 Dec 18;85(24):15872-15884. doi: 10.1021/acs.joc.0c00703. Epub 2020 May 18.
9
Synthesis of Unprecedented α/β-Alternate (1→4)-Glucans via Stereoselective Iterative Glycosylation.
Chemistry. 2023 May 26;29(30):e202300659. doi: 10.1002/chem.202300659. Epub 2023 Apr 19.

引用本文的文献

1
Physico-chemical properties and substrate specificity of α-(1→3)-d-glucan degrading recombinant mutanase from expressed in .
Appl Environ Microbiol. 2025 Feb 19;91(2):e0022624. doi: 10.1128/aem.00226-24. Epub 2025 Jan 23.
2
Synthesis of Fungal Cell Wall Oligosaccharides and Their Ability to Trigger Plant Immune Responses.
European J Org Chem. 2022 Jul 21;2022(27):e202200313. doi: 10.1002/ejoc.202200313. Epub 2022 Jul 15.
3
An Orthogonally Protected Cyclitol for the Construction of Nigerose- and Dextran-Mimetic Cyclophellitols.
Org Lett. 2021 Dec 17;23(24):9516-9519. doi: 10.1021/acs.orglett.1c03723. Epub 2021 Nov 30.
4
Progress and challenges in the synthesis of sequence controlled polysaccharides.
Beilstein J Org Chem. 2021 Aug 5;17:1981-2025. doi: 10.3762/bjoc.17.129. eCollection 2021.
5
Reagent Controlled Glycosylations for the Assembly of Well-Defined Pel Oligosaccharides.
J Org Chem. 2020 Dec 18;85(24):15872-15884. doi: 10.1021/acs.joc.0c00703. Epub 2020 May 18.

本文引用的文献

1
Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity.
Angew Chem Int Ed Engl. 2018 Jul 2;57(27):8240-8244. doi: 10.1002/anie.201802899. Epub 2018 Apr 26.
2
Reagent Controlled Stereoselective Synthesis of α-Glucans.
J Am Chem Soc. 2018 Apr 4;140(13):4632-4638. doi: 10.1021/jacs.8b00669. Epub 2018 Mar 23.
3
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.
J Fungi (Basel). 2017 Nov 18;3(4):63. doi: 10.3390/jof3040063.
4
The influence of acceptor nucleophilicity on the glycosylation reaction mechanism.
Chem Sci. 2017 Mar 1;8(3):1867-1875. doi: 10.1039/c6sc04638j. Epub 2016 Nov 9.
5
Thermal and mechanical properties of tailor-made unbranched α-1,3-glucan esters with various carboxylic acid chain length.
Carbohydr Polym. 2017 Aug 1;169:245-254. doi: 10.1016/j.carbpol.2017.04.015. Epub 2017 Apr 10.
6
Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology.
Acc Chem Res. 2017 May 16;50(5):1171-1183. doi: 10.1021/acs.accounts.6b00518. Epub 2017 Apr 25.
8
Chemical Structure and Molecular Weights of α-(1→3)-D-Glucan from Lentinus edodes.
Biosci Biotechnol Biochem. 1999;63(7):1197-202. doi: 10.1271/bbb.63.1197.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验