文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于光学相位特征的机器学习在细胞系表型分析中的应用。

Machine Learning with Optical Phase Signatures for Phenotypic Profiling of Cell Lines.

机构信息

Department of Biomedical Engineering, The Catholic University of America, Washington, DC.

Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC.

出版信息

Cytometry A. 2019 Jul;95(7):757-768. doi: 10.1002/cyto.a.23774. Epub 2019 Apr 22.


DOI:10.1002/cyto.a.23774
PMID:31008570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7068951/
Abstract

Robust and reproducible profiling of cell lines is essential for phenotypic screening assays. The goals of this study were to determine robust and reproducible optical phase signatures of cell lines for classification with machine learning and to correlate optical phase parameters to motile behavior. Digital holographic microscopy (DHM) reconstructed phase maps of cells from two pairs of cancer and non-cancer cell lines. Seventeen image parameters were extracted from each cell's phase map, used for linear support vector machine learning, and correlated to scratch wound closure and Boyden chamber chemotaxis. The classification accuracy was between 90% and 100% for the six pairwise cell line comparisons. Several phase parameters correlated with wound closure rate and chemotaxis across the four cell lines. The level of cell confluence in culture affected phase parameters in all cell lines tested. Results indicate that optical phase features of cell lines are a robust set of quantitative data of potential utility for phenotypic screening and prediction of motile behavior. © 2019 International Society for Advancement of Cytometry.

摘要

细胞系的稳健和可重现的分析对于表型筛选测定至关重要。本研究的目的是确定细胞系的稳健和可重现的光学相位特征,以便用机器学习进行分类,并将光学相位参数与运动行为相关联。数字全息显微镜(DHM)重建了两对癌细胞系和非癌细胞系的细胞的相位图谱。从每个细胞的相位图中提取了 17 个图像参数,用于线性支持向量机学习,并与划痕伤口闭合和 Boyden 室趋化性相关联。在六对细胞系比较中,分类准确率在 90%到 100%之间。几个相位参数与四个细胞系的伤口闭合率和趋化性相关。细胞在培养中的汇合水平影响了所有测试细胞系的相位参数。结果表明,细胞系的光学相位特征是一组稳健的定量数据,对于表型筛选和运动行为预测具有潜在的应用价值。 © 2019 国际细胞分析协会。

相似文献

[1]
Machine Learning with Optical Phase Signatures for Phenotypic Profiling of Cell Lines.

Cytometry A. 2019-4-22

[2]
Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

Cytometry A. 2017-12-28

[3]
Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging.

J Biomed Opt. 2020-2

[4]
Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy.

Cytometry A. 2017-5

[5]
Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition.

Sci Rep. 2019-3-5

[6]
Quantitative phase microscopy spatial signatures of cancer cells.

Cytometry A. 2017-5

[7]
Label-free, high-throughput holographic screening and enumeration of tumor cells in blood.

Lab Chip. 2017-8-22

[8]
TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set.

Med Image Anal. 2019-10

[9]
Digital Holographic Microscopy to Assess Cell Behavior.

Methods Mol Biol. 2023

[10]
In vitro monitoring of photoinduced necrosis in HeLa cells using digital holographic microscopy and machine learning.

J Opt Soc Am A Opt Image Sci Vis. 2020-2-1

引用本文的文献

[1]
A self-supervised learning approach for high throughput and high content cell segmentation.

Commun Biol. 2025-5-21

[2]
Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks.

Sci Rep. 2024-4-19

[3]
Digital Holographic Microscopy to Assess Cell Behavior.

Methods Mol Biol. 2023

[4]
Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine.

ACS Nano. 2022-8-23

[5]
Dual-modality digital holographic and polarization microscope to quantify phase and birefringence signals in biospecimens with a complex microstructure.

Biomed Opt Express. 2022-1-14

[6]
Raman and quantitative phase imaging allow morpho-molecular recognition of malignancy and stages of B-cell acute lymphoblastic leukemia.

Biosens Bioelectron. 2021-10-15

[7]
Keratin 19 maintains E-cadherin localization at the cell surface and stabilizes cell-cell adhesion of MCF7 cells.

Cell Adh Migr. 2021-12

[8]
Coarse Raman and optical diffraction tomographic imaging enable label-free phenotyping of isogenic breast cancer cells of varying metastatic potential.

Biosens Bioelectron. 2021-3-1

[9]
Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition.

J Biomed Opt. 2020-8

[10]
Automation, Monitoring, and Standardization of Cell Product Manufacturing.

Front Bioeng Biotechnol. 2020-7-14

本文引用的文献

[1]
Strategies for reducing speckle noise in digital holography.

Light Sci Appl. 2018-8-1

[2]
Evaluation of holographic imaging cytometer holomonitor M4® motility applications.

Cytometry A. 2018-10-21

[3]
Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells.

Biosens Bioelectron. 2018-9-21

[4]
In vitro cytotoxicity evaluation of cadmium by label-free holographic microscopy.

J Biophotonics. 2018-12

[5]
Label-free, high-throughput detection of P. falciparum infection in sphered erythrocytes with digital holographic microscopy.

Lab Chip. 2018-6-12

[6]
High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia.

Cell Rep. 2018-4-24

[7]
Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution.

Light Sci Appl. 2015

[8]
Noninvasive detection of macrophage activation with single-cell resolution through machine learning.

Proc Natl Acad Sci U S A. 2018-3-6

[9]
High-Speed Live-Cell Interferometry: A New Method for Quantifying Tumor Drug Resistance and Heterogeneity.

Anal Chem. 2018-2-13

[10]
Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

Cytometry A. 2017-12-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索