Suppr超能文献

基于光学相位特征的机器学习在细胞系表型分析中的应用。

Machine Learning with Optical Phase Signatures for Phenotypic Profiling of Cell Lines.

机构信息

Department of Biomedical Engineering, The Catholic University of America, Washington, DC.

Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC.

出版信息

Cytometry A. 2019 Jul;95(7):757-768. doi: 10.1002/cyto.a.23774. Epub 2019 Apr 22.

Abstract

Robust and reproducible profiling of cell lines is essential for phenotypic screening assays. The goals of this study were to determine robust and reproducible optical phase signatures of cell lines for classification with machine learning and to correlate optical phase parameters to motile behavior. Digital holographic microscopy (DHM) reconstructed phase maps of cells from two pairs of cancer and non-cancer cell lines. Seventeen image parameters were extracted from each cell's phase map, used for linear support vector machine learning, and correlated to scratch wound closure and Boyden chamber chemotaxis. The classification accuracy was between 90% and 100% for the six pairwise cell line comparisons. Several phase parameters correlated with wound closure rate and chemotaxis across the four cell lines. The level of cell confluence in culture affected phase parameters in all cell lines tested. Results indicate that optical phase features of cell lines are a robust set of quantitative data of potential utility for phenotypic screening and prediction of motile behavior. © 2019 International Society for Advancement of Cytometry.

摘要

细胞系的稳健和可重现的分析对于表型筛选测定至关重要。本研究的目的是确定细胞系的稳健和可重现的光学相位特征,以便用机器学习进行分类,并将光学相位参数与运动行为相关联。数字全息显微镜(DHM)重建了两对癌细胞系和非癌细胞系的细胞的相位图谱。从每个细胞的相位图中提取了 17 个图像参数,用于线性支持向量机学习,并与划痕伤口闭合和 Boyden 室趋化性相关联。在六对细胞系比较中,分类准确率在 90%到 100%之间。几个相位参数与四个细胞系的伤口闭合率和趋化性相关。细胞在培养中的汇合水平影响了所有测试细胞系的相位参数。结果表明,细胞系的光学相位特征是一组稳健的定量数据,对于表型筛选和运动行为预测具有潜在的应用价值。 © 2019 国际细胞分析协会。

相似文献

1
Machine Learning with Optical Phase Signatures for Phenotypic Profiling of Cell Lines.
Cytometry A. 2019 Jul;95(7):757-768. doi: 10.1002/cyto.a.23774. Epub 2019 Apr 22.
4
Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy.
Cytometry A. 2017 May;91(5):460-469. doi: 10.1002/cyto.a.23108. Epub 2017 Apr 24.
6
Quantitative phase microscopy spatial signatures of cancer cells.
Cytometry A. 2017 May;91(5):482-493. doi: 10.1002/cyto.a.23100. Epub 2017 Apr 20.
7
Label-free, high-throughput holographic screening and enumeration of tumor cells in blood.
Lab Chip. 2017 Aug 22;17(17):2920-2932. doi: 10.1039/c7lc00149e.
8
TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set.
Med Image Anal. 2019 Oct;57:176-185. doi: 10.1016/j.media.2019.06.014. Epub 2019 Jun 26.
9
Digital Holographic Microscopy to Assess Cell Behavior.
Methods Mol Biol. 2023;2644:247-266. doi: 10.1007/978-1-0716-3052-5_16.
10
In vitro monitoring of photoinduced necrosis in HeLa cells using digital holographic microscopy and machine learning.
J Opt Soc Am A Opt Image Sci Vis. 2020 Feb 1;37(2):346-352. doi: 10.1364/JOSAA.382135.

引用本文的文献

1
A self-supervised learning approach for high throughput and high content cell segmentation.
Commun Biol. 2025 May 21;8(1):780. doi: 10.1038/s42003-025-08190-w.
3
Digital Holographic Microscopy to Assess Cell Behavior.
Methods Mol Biol. 2023;2644:247-266. doi: 10.1007/978-1-0716-3052-5_16.
4
Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine.
ACS Nano. 2022 Aug 23;16(8):11516-11544. doi: 10.1021/acsnano.1c11507. Epub 2022 Aug 2.
6
Raman and quantitative phase imaging allow morpho-molecular recognition of malignancy and stages of B-cell acute lymphoblastic leukemia.
Biosens Bioelectron. 2021 Oct 15;190:113403. doi: 10.1016/j.bios.2021.113403. Epub 2021 Jun 12.
10
Automation, Monitoring, and Standardization of Cell Product Manufacturing.
Front Bioeng Biotechnol. 2020 Jul 14;8:811. doi: 10.3389/fbioe.2020.00811. eCollection 2020.

本文引用的文献

1
Strategies for reducing speckle noise in digital holography.
Light Sci Appl. 2018 Aug 1;7:48. doi: 10.1038/s41377-018-0050-9. eCollection 2018.
2
Evaluation of holographic imaging cytometer holomonitor M4® motility applications.
Cytometry A. 2018 Nov;93(11):1125-1131. doi: 10.1002/cyto.a.23635. Epub 2018 Oct 21.
3
Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells.
Biosens Bioelectron. 2019 Jan 1;123:69-76. doi: 10.1016/j.bios.2018.09.068. Epub 2018 Sep 21.
4
In vitro cytotoxicity evaluation of cadmium by label-free holographic microscopy.
J Biophotonics. 2018 Dec;11(12):e201800099. doi: 10.1002/jbio.201800099. Epub 2018 Sep 25.
6
High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia.
Cell Rep. 2018 Apr 24;23(4):1205-1219. doi: 10.1016/j.celrep.2018.03.114.
8
Noninvasive detection of macrophage activation with single-cell resolution through machine learning.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2676-E2685. doi: 10.1073/pnas.1711872115. Epub 2018 Mar 6.
9
High-Speed Live-Cell Interferometry: A New Method for Quantifying Tumor Drug Resistance and Heterogeneity.
Anal Chem. 2018 Mar 6;90(5):3299-3306. doi: 10.1021/acs.analchem.7b04828. Epub 2018 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验