Suppr超能文献

利用远心数字全息显微镜和机器学习对癌细胞形态和运动进行定量评估。

Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

机构信息

Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064.

Department of Electrical Engineering, The Catholic University of America, Washington, DC 20064.

出版信息

Cytometry A. 2018 Mar;93(3):334-345. doi: 10.1002/cyto.a.23316. Epub 2017 Dec 28.

Abstract

The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry.

摘要

使用数字全息显微镜(DHM)进行非侵入性、快速获取定量相位图,可以跟踪透明基底上快速的细胞运动。在体外二维表面上,MDA-MB-231 癌细胞呈现出与迁移模式和基质硬度相关的几种形态,与体内癌症侵袭的机制相关。DHM 的定量相位信息可以准确地对具有临床相关性的粘附癌细胞亚群进行分类。为了验证这一点,将侵袭性乳腺癌 MDA-MB-231 细胞系的细胞培养在玻璃、经组织培养处理的聚苯乙烯和胶原水凝胶上,并在 DHM 成像后,用荧光显微镜对 F-肌动蛋白和细胞核进行染色。在不同的基质上,在细胞分裂过程中和在基质粘附过程中,跟踪细胞相位参数的趋势,并将其与 F-肌动蛋白特征相关联。使用全息相位重建的参数和传统相位图像中的细胞几何特征,训练和测试支持向量机学习算法,并用于区分伸长和圆形细胞形态。与使用传统明场显微镜的细胞几何特征相比,DHM 能够以 94%的准确度区分 MDA-MB-231 细胞的伸长和圆形形态,而准确度为 83%。这一发现表明,DHM 具有检测和监测与细胞周期阶段状态、基质粘附和运动相关的癌细胞形态的潜力。©2017 国际细胞分析促进协会。

相似文献

引用本文的文献

7
Digital Holographic Microscopy to Assess Cell Behavior.数字全息显微镜评估细胞行为。
Methods Mol Biol. 2023;2644:247-266. doi: 10.1007/978-1-0716-3052-5_16.
10

本文引用的文献

6
Holography, machine learning, and cancer cells.全息术、机器学习与癌细胞。
Cytometry A. 2017 Aug;91(8):754-756. doi: 10.1002/cyto.a.23112. Epub 2017 Apr 24.
7
Quantitative phase microscopy spatial signatures of cancer cells.癌细胞的定量相显微镜空间特征。
Cytometry A. 2017 May;91(5):482-493. doi: 10.1002/cyto.a.23100. Epub 2017 Apr 20.
9
Halo-free Phase Contrast Microscopy.无晕相衬显微镜。
Sci Rep. 2017 Mar 24;7:44034. doi: 10.1038/srep44034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验