Aquatic Ecology and Water Quality Management Group , Wageningen University , P.O. Box 47, 6700 AA Wageningen , The Netherlands.
Department of Biology , University of Namur , Rue de Bruxelles 61 , 5000 Namur , Belgium.
Environ Sci Technol. 2019 May 21;53(10):6025-6034. doi: 10.1021/acs.est.9b00893. Epub 2019 Apr 30.
In this study, a trait-based macroinvertebrate sensitivity modeling tool is presented that provides two main outcomes: (1) it constructs a macroinvertebrate sensitivity ranking and, subsequently, a predictive trait model for each one of a diverse set of predefined Modes of Action (MOAs) and (2) it reveals data gaps and restrictions, helping with the direction of future research. Besides revealing taxonomic patterns of species sensitivity, we find that there was not one genus, family, or class which was most sensitive to all MOAs and that common test taxa were often not the most sensitive at all. Traits like life cycle duration and feeding mode were identified as important in explaining species sensitivity. For 71% of the species, no or incomplete trait data were available, making the lack of trait data the main obstacle in model construction. Research focus should therefore be on completing trait databases and enhancing them with finer morphological traits, focusing on the toxicodynamics of the chemical (e.g., target site distribution). Further improved sensitivity models can help with the creation of ecological scenarios by predicting the sensitivity of untested species. Through this development, our approach can help reduce animal testing and contribute toward a new predictive ecotoxicology framework.
在这项研究中,提出了一种基于特征的大型无脊椎动物敏感性建模工具,它提供了两个主要结果:(1)它构建了一个大型无脊椎动物敏感性排名,并随后为各种预定义作用模式(MOAs)中的每一个构建了一个预测特征模型;(2)它揭示了数据差距和限制,有助于指导未来的研究。除了揭示物种敏感性的分类模式外,我们还发现没有一个属、科或纲对所有 MOAs 最敏感,而且常见的测试类群通常根本不是最敏感的。生命周期持续时间和摄食方式等特征被确定为解释物种敏感性的重要因素。对于 71%的物种,没有或没有完整的特征数据,因此缺乏特征数据是模型构建的主要障碍。因此,研究重点应该放在完成特征数据库上,并通过更精细的形态特征对其进行增强,重点关注化学物质的毒动学(例如,靶位分布)。进一步改进的敏感性模型可以通过预测未经测试的物种的敏感性来帮助创建生态场景。通过这种发展,我们的方法可以帮助减少动物测试,并为新的预测性毒理学框架做出贡献。