Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Korea.
KAIST Institute for Nanocentury , 291 Daehak-ro , Daejeon 34141 , Korea.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17247-17255. doi: 10.1021/acsami.9b03479. Epub 2019 May 1.
As neural stem cells (NSCs) interact with biophysical cues from their niche during development, it is important to understand the biomolecular mechanism of how the NSCs process these biophysical cues to regulate their behaviors. In particular, anisotropic geometric cues in micro-/nanoscale have been utilized to investigate the biophysical effect of the structure on NSCs behaviors. Here, a series of new nanoscale anisotropic wrinkle structures with the a range of wavelength scales (from 50 nm to 37 μm) was developed to demonstrate the effect of the anisotropic nanostructure on the fate commitment of NSCs. Intriguingly, two distinct characteristic length scales promoted the neurogenesis. Each wavelength scale showed a striking variation in terms of dependency on the directionality of the structures, suggesting the existence of at least two different ways in the processing of anisotropic geometries for neurogenesis. Furthermore, the combined effect of the two distinctive length scales was observed by employing hierarchical multiscale wrinkle structures with two characteristic neurogenesis-promoting wavelengths. Taken together, the wrinkle structure system developed in this study can serve as an effective platform to advance the understanding of how cells sense anisotropic geometries for their specific cellular behaviors. Furthermore, this could provide clues for improving nerve regeneration system of stem cell therapies.
神经干细胞 (NSCs) 在发育过程中与所在龛位的生物物理线索相互作用,因此了解 NSCs 如何处理这些生物物理线索以调节其行为的生物分子机制非常重要。特别是,微/纳米尺度的各向异性几何线索已被用于研究结构对 NSCs 行为的生物物理影响。在这里,开发了一系列具有不同波长尺度(从 50nm 到 37μm)的新型纳米级各向异性褶皱结构,以证明各向异性纳米结构对 NSCs 命运决定的影响。有趣的是,两种不同的特征长度尺度促进了神经发生。每个波长尺度在对结构方向性的依赖性方面表现出显著的变化,表明至少存在两种不同的方式来处理各向异性几何形状以促进神经发生。此外,通过采用具有两个特征性神经发生促进波长的分层多尺度褶皱结构,观察到了两个独特长度尺度的组合效应。总之,本研究中开发的褶皱结构系统可以作为一个有效的平台,推进我们对细胞如何感知各向异性几何形状以实现其特定细胞行为的理解。此外,这可能为改善干细胞治疗中的神经再生系统提供线索。